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The use of Constraint Programming in Music is not new and is still very active today. This paper presents some advances and examples in the use of
a completely new approach, constraint programming in music using relation domains. It defines a new high-level constraint, the filter constraint.
This constraint is used in the modeling of a musical problem, the harmonized round problem. The paper presents the modeling of this problem and
of some variants. In addition, another section describes a new concept, the constrained rewriting system. Its use is promising for some future prac-
tices in computer-aided composition. Rewriting systems have indeed been used in music for a long time and this new approach allows constraining
those structures: production results and production rules can be constrained in order to ensure some desired properties. Some preliminary results

are given regarding this new concept.

The general idea of constraint programming (CP) is to
build a model for a problem to solve. Information is rep-
resented by means of decision variables, that is, variables
with a set of possible values that they can take. Proper-
ties of the problem are expressed as constraints on vari-
ables of the model. Automated techniques are then used
to find a value for every variable of the problem that sat-
isfies all the constraints. This approach has been widely
used to tackle problems in areas ranging from scheduling
of activities to biology.

Constraint Programming is used for several decades in
music. Several abstraction systems (Anders / Miranda
2011) have been built on top of CP and have led to sev-
eral music compositions (Agon / Assayag / Bresson 2006;
Bresson / Agon / Assayag 2008). A book describing CP in
Music has also been recently published (Truchet / As-
sayag 2011).

Recently, a new approach of constraint programming in
music has been presented (Van Cauwelaert / Gutiérrez /
Van Roy 2012). This approach considers decision varia-
bles with relation domains, and related constraints. It
allows representation and constraints of complex struc-
tures. For instance, it is possible to represent a whole
score with only one decision variable. It is also possible
to represent musical transformations and musical links
with such variables. This means that they can be con-
strained too. The constraints can be very global about
the music but also local.

In this paper, we present some advances in this field. We
first provide the needed foundations to understand the
presented content. Then, we explain a new high-level
constraint: the filter constraint. After that, we describe
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how to solve a real musical problem: the harmonized
round problem. Some variants are also provided. As this
new approach allows tackling problems involving complex
structures, we explain in the next section how to model
Constrained Rewriting Systems. Rewriting systems have
indeed been used for music for a long time, in particular
Lindenmayer-Systems (Prusinkiewicz 1986; McCormack
1996; Worth / Stepney 2005). Our representation of re-
writing systems is however more general than L-Systems.
A substantial advantage is that it is now also possible to
constrain those rewriting systems (including production
rules, axioms and intermediate productions). In the last
section, we provide some preliminary results in music
regarding this new technique.

Constraint programming in
music with relations

In this section, we first give an introduction to Constraint
Programming on Relations. We then explain briefly how
it can be used to model musical problems.

Constraint programming on relations

Constraint Programming on Relations (CPRel) is about
using relation decision variables along with constraints
that enforce properties on these variables. It also pro-
vides search abstractions and predefined generic heuris-
tic strategies for solving models with this kind of varia-
bles.

A relation decision variable (relation variable for short)
represents a relation out of a set of possible relations. A
relation is a set of tuples of the same arity. A tuple is an
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element of the Cartesian product of the finite set of inte-
gers: U:{x:OSxSk}. The arity of a tuple is the
number of elements that belong to it. For instance, tu-
ples of arity n are elements of the set: U x...x U . This

set is also represented as UU" .

The domain of a relation variable X, denoted Dy, is the
set of possible relations that X can be assigned to. A con-

straint C on a set of relation variables {)(l,...,Xn} will

ensure that, in a given solution, the domain of every var-
iable X; contains at least one relation that satisfies it. This
is also called constraint inference. A variable is consid-
ered determined or assigned when its domain contains
one and only one relation.

The constraints that can be used on relation variables
come from two fields: Set Theory and Relational Algebra
(Date / Darwen 1998). As a relation variable represents a
relation it does make sense to express properties like:

XNY=Zand X = 7, where X, Y and Z are relation
variables. Properties from the Relational Algebra include
for instance:

Z=XZ
C

which states that the join (in our case eg-join) of the two
relations X and Y on the components (also called col-
umns) in C, must be the relation Z.

The notion of tuple concatenation is used for the defini-
tions of the constraints. Given two tuples

r =<l’1,...,}’n>and S =<S1,...,Sm>, we represent its con-
catenation by r++S=<I”1,...rn,sl,...,sm>. The arity of
the resulting tuple |I’++S| =n+m.

The notion of tuple permutation is also used. We say that
a tuple t is a permutation of a tuple s under a permuta-

tion function f, denoted permutation(t,s,f) if |t| = |S| and

Vie{l,..,n}:t, =7,

Projection. This is a binary constraint on variables X and
Y of different arities. It takes a constant i as an extra pa-

rameter, the number of components on the right of X
that are projected. Its semantics is:

HXZYE\V/tl,---,tLX\:
7

<t17'"at|X|—(i—1)a"'7t|X|> €X
<~ <t|X|—(i—1)>---;t|X|> ey

Join. This is a ternary constraint on relations. It takes also
a constant i, which represents the number of compo-
nents on the right of X and on the left of Y that are con-
sidered by the constraint. Its semantics is:

XXY =7=
' Vr,s:3u:|ul =1
AN(r++u € X N u++s €Y)
= (r++u)++s € 2)

Compose. This is a ternary constraint on relations. It
takes also a constant i, which represents the number of
components on the right of X and on the left of Y that are
considered by the constraint. It matches the semantics of
relation composition from the Relational Algebra (Date /
Darwen 1998). Its semantics is:

X—Y=/=
¢ Vr,s: Ju:jul =i
A(r++u € X N u++s €Y)

= r++s € )

Confluent join. This is a special case of join with an addi-
tional confluence condition. The additional condition en-
sures that it collects only those combined steps in Z for
which all possible first steps in X can always find a next step
in Y that continues to the same result. Its semantics is:

XaY =27 =
! Vr,s:Vu: lul =14 A
(r+4u € X = wu++s€Y)
ANFt:|tl =i Ar4+t € X A t4+s€Y))
= (r++u)++s € Z)

Permutation. The permutation constraint allows relating
columns in relations of the same arity. Given two relation
variables X and Y, and a bijective function p:i— J

where i and j are columns in X and Y resp., the permuta-
tion is defined as:

Permutation(X, p,Y)=
Vie X ,IreY:
permutation(t,r,p)

NE(X) = #(Y)

If p is the identity function then this constraint enforces
equality between X and Y. With this constraint we can
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represent the rearrangement of columns in relations.
This allows imposing that two relations are equal modulo
some permutation of their components. Using it, we can
apply all existing constraints (Van Cauwelaert / Gutiérrez
/ Van Roy 2012) on components of relations without re-
garding their position. The permutation constraint will
only be explicitly used in this paper when it is necessary
for understanding.

Music representation with constraint programming on
relations

We use the two concepts of Musical Bundle (MB) and
Musical Bundle Sets (MBS) (Van Cauwelaert / Gutiérrez /
Van Roy 2012) as a way of representing musical concepts
in terms of tuples and relations, which are the basic con-
cepts of our new constraint system.

Musical bundle is a set of pairs where each pair com-
bines a musical parameter with an integer value. A musi-
cal parameter can be here very abstract (they are not
restricted to be traditional parameters). An example of
an MB is a note defined by several musical parameters,
such as the following tuple:

tuple = < pitch, onset, dumtion,...>

Musical bundle set is a set of musical bundles. Examples
of MBSs are a chord, a bar, or a score. But an MBS can
express more abstract musical concepts as well, for ex-
ample a transformation between two scores can also be
represented as an MBS. When modeling musical prob-
lems, we will use the terms MBS and relation variable
interchangeably.

When we define a new musical problem in terms of rela-
tion variables, we need first to declare these varia-
bles. Providing the minimum and maximum MBS that
the variable can assume does this. We then impose con-
straints on these relation variables. The constraint solver
then uses a combination of propagation and heuristic
search to find values of the relation variables that satis-
fy the constraints. For example, suppose that we
are interested in finding a musical piece M with some
specific characteristics. The piece itself is represented
by the relation variable M with the following minimum
and maximum MBSs:

M e|{ }..{{60,... 72} x{0,.., 7}}]

This notation says that the minimum MBS of M is empty
(i.e. 8 beats of silence) and the maximum MBS of M is the
musical piece that contains all the notes from middle C to
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C one octave higher, occurring on the first 8 beats (We
assume here a signature 4/4 and quarter notes. For this
example we only consider pitch and onset as the relevant
parameters of the MBs.). The minimum and maximum
MBSs of M are represented by the following scores:

Additionally we want our score to respect some composi-
tion rules. Imposing constraints allows doing that.

MBS as a transformation of MBSs

An MBS can be used to define a transformation between
two other  MBSs. For instance, each note

<pil‘ch, 0nset> in the original MBS can be transformed

into <pitch',0nset'> in the new MBS. How the

new values for the attributes are computed depends on
an MBS that represents the transformation itself. As a
particular example, let us consider a score score defined
as a set of MBs of the form

< pitch, 0nset>

, and a relation T to represent the intended musical
transformation. Every element of T has the form:

end>

< pitch,, . ,onset,, ., pitch, , onset,, d>

To obtain the transformed score (represented by the
binary relation score,.,s resulting from the transfor-
mation of score by T we impose the compose constraint

SCOTE trans = Score — T
2

In this way we ensure that any MB of score that can
be transformed by T has one (or several) respective(s)
transformed MB in scoregns.

Notice that other kinds of transformation could be mod-
elled in a similar way. The use of MBSs as transfor-
mations of MBSs will be used in this paper to model pro-
duction rules of rewriting systems.

The filter constraint

This section presents a new high-level constraint that will
be used in the next section. A common use case is
to filter or classify the information in a relation based on
some criteria. For instance, for harmony it is useful to
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filter the pitches that are not consonant. Filtering can be
easily expressed thanks to the confluent join constraint.

The filter constraint is defined by (we do not write re-
quired permutation here):

filter(R,F,R;) = [[ R F = Ry

In this definition, R (arity m, with m larger or equal to n) is
the relation to be filtered and Ry (arity m, with m larger or
equal to n) is the result of the filtering. The relation F (arity
n+1) represents the filter. The tuples of F have the form

< param,,..., param,,id >

where param;,..., param, are parameters defined in R
and id is a group identifier. All the n-ary sub-tuples shar-
ing the same group identifier belong to the same group.

Intuitively, the filter constraint let be in the resulting re-
lation Ry only the tuples of R such that if they share the
same information on the left sub-tuple (m-n components
on the left) then “pass together through the filter”, that
is, their right sub-tuple (n components on the right) be-
long to a same group in F.

A simple but powerful example of the use of the filter
constraint is the following: assume the relation S repre-
senting a score, for which each tuple has the form

onset, pitch
{ )

. Let Fyarmony be a binary relation for which each tuple has
the form

< pitch, grouplD>

where pitches with same group id belong to the same
group. Those groups can for instance represent groups of
consonant pitches. Imposing the constraint filter(S, Fp,.
monyS) allows to ensure that at a given onset, only conso-
nant pitches will be heard together.

In practice, this constraint can also be used in order to
get some information about the harmony from a given
score and to use this information to constrain a new
score we want to create.

The harmonized round problem

Musical problems can be solved using constraint pro-
gramming. Let us consider the problem of finding a
round, with a leader voice V, and one follower voice V.
V; has then to be played o beats after V,. Additionally,
we want some given harmony rules to be respected be-
tween the voices. The value o is called the offset be-
tween the onsets of V; and V.

Resolution of the round problem

To model the problem, we use a relation variable score
to represent the final score. score is a binary relation in
which every element has the form

< pitch, onset>

. A tuple of that relation represents a note. The same
representation is used for the two voices (relation varia-
bles vy and v;). A unary relation Offset represents the
offset. Any element in this relation will represent the
offset performed by a voice. So, for the particular case
of one follower voice, Offset contains only one element.
We also use a relation value named Plus, that contains
all the tuples of the form

(X,Y,X+Y)

(Notice that this relation value is a constraint per se for
finite domain variables). For the harmony constraint let
us assume an input binary relation Consonant with ele-
ments of the form

< pitch, index>

. This relation links pitches with indices. The semantic
behind this relation is that all the pitches linked with a
given index are all consonant with each other.

The round property is imposed by:

off
U = o > offset

v = ol 5 Plus

score = VO \ V|
The harmony constraint is enforced by:
filter(score, Consonant, score)

One important thing in this model is that it allows ex-
pressing directly that three pitches a, b and c are not
consonant altogether while they are consonant pairwise.
And it generalizes to n pitches without any effort:
pitches are consonant altogether if they are linked by a
common index in the relation Consonant. This ease
comes from the use of the filter constraint.

Extending the round problem

In this subsection, we explain how we have extended the
round problem with other constraints.

A more realistic harmony constraint. Considering the
harmony only for a given onset is actually a limitation
for the composition process. It is more general to
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think about the harmony for a given time interval. We
will talk here about a time window inside which all
played notes must be consonant with each other. The
model described in the previous subsection is actually a
particular case for which the window size is equal to 1.

This idea can be very easily modeled using constraint
programming on relations. With only 3 constraints, we
gather together all the notes that are inside the same
window. We obtain then the relation varia-
ble scorewingow- We then simply impose the
same harmony constraint than in the previous subsec-
tion but we replace score by scoreyingow in the expres-
sions. The relation Window is here the unary relation

(0} (1)

where n is the size of the time window.
permutation(Plus, Plus,,, { {0,2},{0,1} })

SCOTE Window = Score — Plus window
1

Vuza canon constraint, Musical structures studied by the
mathematician D. T. Vuza are the canons of maximal cat-
egory. Those are canons in which two different voices
never play at a same onset but for each onset there is
always a voice that is playing. This structure has already
been used in a composition (Bloch 2006). Using con-
straint programming on relations allows imposing this
constraint in a concise way, even if we are working with
several musical parameters. However, we will here only
express the first part of the constraint.

First of all, we create the final score in a slightly different
way than in the subsection presenting the harmonized
round problem. The score (here represented by the vari-
able voices) is made of tuples of the form

<v0ice,.d, pitch, 0nset>

. This allows keeping the voice membership information
for all notes.

off _
Vo = Vo b offset
VOICES gen, = vgﬁ > Plus

VOICES fo] = H VOICES gen
3

v(_t)uithnum — {<0>} Doq Vo

withnum

voices = v, U voices
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After that, we create a relation that links voices that con-
tains notes played at common onset. To impose the
constraint that two voices never play at a same onset, we
simply enforce the fact that this relation is included in
the relation eq. This relation only contains tuples of the
form

<i,i>:ie&

The constraint is defined by:

permutation(voices, voices,,,,., {{l, 24,40, 1}})
voicesggﬁz,,, = H VOLCES perm
2

permutation(voices”” | voices”” {{O,l}})

perm?> reperm?

v = voicesP’

reperm

o o PTOJ
— voices
1 perm

VW C eq

Optimization of the number of voices, Eventually, using
a cardinality constraint on the number of tuples inside a
relation, we can solve an optimization problem from
the constraint satisfaction problem presented in this
subsection. For instance, we can decide to optimize the
number of voices. This can be done in a straightforward
manner: optimize the cardinality of the unary relation off
which contains all the offset values.

Constrained rewriting systems

This section presents the concept of constrained rewrit-
ing system. This concept emerged from the idea of rep-
resenting Lindenmayer-Systems (L-Systems) using CPRel,
as they have been rewriting systems used in the musical
field for a long time. Other rewriting systems exist and
our approach does not add any a priori restriction re-
garding that. As this idea comes from L-Systems, we first
introduce their use in music. Then, we explain how re-
writing systems can be modeled in a Constraint Satisfac-
tion Problem.

Lindenmayer-systems for music composition

L-systems have been considered for long time in music
composition/generation (Prusinkiewicz 1986; McCormack
1996; Worth / Stepney 2005). In this section, we briefly
explain what they are and how they can be used for mu-
sical purposes. L-systems have been introduced by Lin-
denmayer (Lindenmayer 1968) to model the growth
process of living organisms. L-systems are formal gram-
mars, similar to Chomsky grammars, but with a main

25



Sascha Van Cauwelaert / Gustavo Gutiérrez / Peter Van Roy — Practical Uses of Constraint Programming in Music Using Relation Domains

difference: productions are made in parallel. In our case,
we will only consider Deterministic Context-Free L-
systems (DOL-system). A DOL-system is a set

{V, a),P} where:

e Visan alphabet, i.e., the set of symbols of the L-system.
V* is the set of all words over V. V' is the set of all
non-empty words over V.

+  (is a starting axiom. It is an element of V",
« Pisaset of production rules.

Depending on the interpretation we give to the elements
of V, we can use an L-system for different purposes.
Originally, they were used to describe the growth of
plants. In this case, we will give them a musical inter-
pretation. There exist actually several ways of doing
that, depending on which meaning we give to the sym-
bols of V. One can directly interpret the symbols as sym-
bolic music information, such as pitches (McCormack
1996). Other works show the use of L-system symbols
to modify a current musical state, using a turtle interpre-
tation (Prusinkiewicz 1986; Worth / Stepney 2005). Other
interpretations could be given, such as symbols used to
represent sound or gestural information. The approach
taken in this paper does not make any a priori re-
striction on that regard.

We will present here an example from McCormack
(McCormack 1996) that uses symbols to represent
pitches values. The definition of the (DO)L-system is the
following :

- V={CE,G}
- w=C

- p:CoFE

« p,:E—>CGC

* Dii G — &, where &is the empty word.

If we concatenate the different strings we obtain at each
iteration, we obtain the following string for 5 iterations:

CECGCEECGCCGCEEEE

This string can be interpreted as a score if each symbol
represents the pitch (or pitch-class) value of a note.
Durations are not represented here so we consider all of
them to be quarter notes. The string can then be inter-
preted as the following score:

As we have seen, an L-system (or more generally, a re-
writing system) can be used to generate music. However,

we may not know how to define it exactly (e.g., the
production rules to be used), and may want it to own
some properties (e.g., two productions from different
iterations are exactly equal). In the following section,
we will describe how it is possible to define a rewriting
system inside a Constraint Satisfaction Problem. This
will allow us to constrain the rewriting system itself.

Rewriting systems defined in a constraint satisfaction
problem

Let G = {V,a),P} be a rewriting system (where V,

@and P have similar semantics to those used in an L-
System) and let the elements of V be notey, ..., notepmx,.
They correspond to MBs of the form

< pitch, onset, durati0n>

where n, m and q are respectively the number of differ-
ent pitches, onsets and durations we represent.

We can represent the i" iteration of G by the MBS M,
that will contain MBs of the form

< pitch, onset, durati0n>

(this MBS can be used to represent a score for instance).
An iteration produces then here a set of symbols instead
of a sequence as it is the case with L-Systems.

As said before we can use an MBS to transform MBSs.
This allows modeling the elements of P. For instance,
assume the following rule to be part of P:

note, — note;

This rule can be modeled using an MBS Prod,.. that
contains the MB (p, o and d stands here respectively for
pitch, onset and duration):

<pnote[ 2 Onote[ 2 dnote[ ’ pnote/- ’ Onotej 2 dnotej >

To apply the rule on M, (iteration result k of the rewriting
process), the compose constraint is used:

This allows getting the MBS M,,, of iteration k+1. Other
rules to be applied can be added just by adding MBs to
Prod,ote.

Assume now we want to use the set of rules:

<pa’ O, d1> _> <pb’ Oy, d1>

<pa,0n,dq>—><pb,0n,dq>

This set of rules only needs one MB to be represented:

<Pa>pb>
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Those rules can be applied all in once using the con-
straint:

where Prodp, is the MBS that contains this MB.
Intuitively, this means that for any note with a pitch p, in
iteration M,, the same note but with a pitch p, will be in
iteration My,;. This idea can also be used for the onset
and duration parameters.

In all cases, we may have to use the permutation
constraint to apply the constraint on the right relation
components.

Notice that we could also consider more exotic
production rules, such as if there exists a note with a
given pitch, then a given note is produced. This involves
the projection constraint.

We are now able to model a rewriting system as a part of
a Constraint Satisfaction Problem. We call this a
Constrained Rewriting System (CRS).

General constrained rewriting system

A CRS is a Rewriting System modeled as a part of a
constraint satisfaction problem. Because the elements
defining the rewriting system are modeled by relation
variables, we can constrain them. This means that we are
able to constrain the axiom of the rewriting system, but
also production rules and results of given iterations. The
production rules do not have to be fixed at modeling
time; we may not know which production rules we have
to use in order to respect some desired properties about
the produced music and/or the rewriting system. In a
sense, we model a set of potential rewriting systems and
we try to find out of this set those that respect our
desired constraints.

Let us define the RSy, constraint (the permutation
constraints needed to be imposed are not written here
for readability):

RSoiep(R, Proct,Q) = Q = J(R  —  Prou(i))

f(PTset(i))

where R and Q are two relations of the same arity, Pre; is
a set of relations (possibly of different arities) and f(A) =
arity(A)/2. Each relation in Pr,; describes a set of
production rules of the same kind (e.g., rules regarding
pitch only, such as those presented in the previous
subsection). Notice that the elements of Pr,; must have
even arities; we only consider rules such as described in
the previous subsection. This constraint is defined in
terms of existing constraints and allows describing
exactly one iteration of a CRS.
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Assume we want to obtain R, the result of the jth
iteration of a CRS, for which R; the product of the it
iteration, has a property ensured by the constraint C
(some musical constraints expressed using CPRel are
provided in a previous work (Van Cauwelaert / Gutiérrez
/ Van Roy 2012)).

Let R, be a ternary relation for which all tuples have the
form

< pitch, onset, durati0n>

. Ry describes the axiom of the CRS. Let Rules be the set
of relations that describes the production rules. The CRS
can now easily be modeled:

RS, (R,, Rules,R,)
RS, (R, Rules,R,)

RS\‘tep (Ri’ RMZ@S, Ri+l )

RS

step

(R, Rules,R,.,)

Imposing additional constraints is now straightforward. For
instance, the constraint C just needs to be imposed on R..
The effect on the CRS (and so on R)) will be directly seen.

Moreover, some constraints involving elements of Rules
can also be considered. The rewriting system can be
adapted to our needs, thanks to the use of constraints.
Going further, we can model the rewriting system
without knowing exactly how it is, while forcing it to own
some properties. A solution to the Constraint Satisfaction
Problem provides also a rewriting system having these
desired properties.

Constrained rewriting system with musical motives

Consider now to work with musical structures, or
motives, instead of going directly to the details of
musical parameters. This can be done easily using CPRel.
What is proposed here follows the approach of Anders to
use L-systems to generate the motif structure and then
use CP for local details (Anders 2007). However, because
we model the rewriting system as a part of the constraint
satisfaction problem, this approach is more general as
the rewriting system may not be known at modeling
time.

Let Motives be a relation used to represent all the musical
motives we want. Every tuple of Motives has the form:

<m0tiveID, pitch, onset, duration,..., param, >
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Motives is a relation of arity n+1 to be used to create a
relation that represents an MBS (e.g., a score) with n
parameters. The component motivelD is used to identify
one motive in the set of motives. Notice that Motives can
be variable.

To model the rewriting system working with motives, we
will work with MBs represented by tuples of the form

<m0tiveID, Oﬁ%et>

where offset is the offset in time according to the onset
parameter. This provides the possibility to offset the
used motives in time. An iteration result will then be a
binary relation that contains elements with this
semantic. The rewriting system is then defined in the
same way as in the previous subsection.

There is an extra step in this approach: the generation of
the final resulting MBSs (e.g., scores). Additional
constraints can then be enforced on those MBSs and
have a direct effect on the whole system. To show how
to make this “translation”, let us consider the i result,
represented by the relation R. In order to get the
information relative to the different motives, we use the
following constraint (permutation constraints will still be
ignored in the following):

RZ-Oﬁ = R; e Motives

We need to transform this relation by adding the offset
value to the onset value, for each tuple. This is done
directly by the following constraint:

Score; = Rioﬁ 5 Plus

where Plus is the ternary relation that contains all the
tuples of the form

(X,Y,X+Y)

(where the set of possible values for X and Y are bounded
but large enough).

Score; represents now the score resulting from the i
iteration and can easily be constrained and interpreted.

Notice that it is also possible to offset other parameters
than the onset, using a similar approach (Van Cauwelaert
/ Gutiérrez / Van Roy 2012).

Preliminary results of
constrained rewriting systems
This section provides a few examples in the use of CRSs.

The results are obtained using the relation domain im-
plementation (Gutiérrez / Jaradin 2010), which is imple-

mented on top of Gecode (Schulte / Lagerkvist / Tack
2006). GeliSo (Van Cauwelaert / Gutiérrez 2011), an in-
terface in development to integrate Gecode into
OpenMusic (Agon / Assayag / Bresson 1998) is used in
order to be able to interpret the results. The library
“OMLily” (Haddad n.d.) has been used to generate the
scores (in pdf format) from the OpenMusic musical ob-
jects. The values used in the presented models are MIDI

values (e.g., <l, 60> represents middle C on onset 1.).

The rules presented are arbitrary and do not follow a
special musical theory.
Simple rewriting system

We only define here a rewriting system with the pre-
sented approach, without any additional constraints on

it. The symbols of V are of the form <0nS€l‘,pitch>. The

definition is (the notation is still borrowed to the defini-
tion of an L-System):

- o:{(1,60)}
Rules,,,.,, - {(60, 60), (60, 64),

(60, 67) ,(64,67) ,(64,70) , (67,72)}

Rules,,, {<i, 60+ j,i+ j,60 +j>:
i€{l,..,100},; € {0,...,.24} }

The result of the fifth iteration is the score:

Rewriting system with motives

As presented before in this paper, we can model a re-
writing system with motives as symbols. We show here
one result regarding this. The tuples used to represent
the notes are of the form

< pitch, duration, 0nset>

(even if the results use indeed the duration parameter
in OpenMusic, note durations are note explicitly repre-
sented in the shown results in this document). The three
motives represented have been borrowed and translated
from an example (Anders n.d.). The model is:
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c @ {<0,1>}, i.e., motif 1 is played with an offset of 0

(i.e., it starts at the first onset)

Patterns :
(1,48,1,1),(1,50,1,2),(1,52,1,3),
(1,53,1,4),(2,48,3,1),(2,59,3,1),
(2,64,3,1),(2,67,3,1),(2,48,3,4),
(2,59.3,4),(2,64,3,4),(2,67,3.4),
(2,48,3,7),(2,59,3,7),(2,64.3,7),
(2,67,3,7), (3,55,2,1),(3,52,2,3),
(3,48,2,5)

o Rules, g, - {<O, 1, 4, 2>}
- Rules,, {<2,3>,<l,1>,<2,2>,<3,3>}

The result of the second iteration is the score:

7

b ; ; ;

|

E j —
Z B i r
1 1 !

!
8 ||
!

Rewriting system with constraints

As we showed in this paper, it is also possible to add oth-
er constraints to a rewriting system. We consider here
the first rewriting system presented in this section, but
we will not fix the axiom (its domain is only bounded).
Additionally, we impose the constraint

{(1,60)} & R,

where R; is the result of the third iteration.

The found axiom is the score:

bk
g\ | | I f “1

The found result for the third iteration is the score:

‘ a1 — e Fi
T 7 ——— J
E= ¥ ¥

As we can see, the constraint is indeed respected.

000 - 00000000 000 0100 (2012)

The found result for the fifth iteration is the score:

Fractal music

As a last example, we have considered an example pre-
sented by Henderson-Seller and Cooper in a work
where they discuss about fractal music (Henderson-
Sellers / Cooper 1993). As rewriting systems can produce
fractal results, we model here one of the example pro-
vided in their work, using the presented approach. The
symbols of V are of the form <0nset, pitch, durati0n>.

The definition is:
J(1,74,16),(17,71,16),
“ (33,67,16),(49,69,16)

Rules,,,,

{(i,74,),i,74,j 1 4):

i €{L..,100},j € {L4,16}}
v

{(i,74,/,i+j14,71,j/4):
ie{l,..,100},/ € {1,4,16}}
|\
{(i,74,),i+j/2,67,j/4):

i €{L..,100},; € {1,4,16}}
|\
{(i,74,/,i+3j/4,69,)/4):
i €{L..,100},; € {1,4,16}}

)

We have not written Rules,... completely here, as it is a
bit repetitive. If we play the axiom and the two first iter-
ations together, we obtain the score (only the beginning
of thescore isrepresented here):
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which is indeed equivalent to the one presented by Hen-
derson-Seller and Cooper.

Conclusion

This paper presents some advances in the use of Con-
straint Programming in Music using Relation Domains.
We first define a high level constraint that allows repre-
senting the fact that a structure is the result of the filter-
ing of a second structure by a third one. We also describe
how to model the harmonized round problem and some
of its variants. The concept of Constrained Rewriting Sys-
tem is then defined. It allows representing and constrain-
ing Rewriting Systems inside Constraint Satisfaction Prob-
lems. In our case, those rewriting systems are used to
create music. We can then constrain the creation process
by constraining the rewriting systems. In the last section,
some preliminary results regarding this approach are
provided.

In the future, we would like to extend the study of what
is presented in this paper, in order to provide more con-
crete results and see to which extent it can be used in
practice. For instance, we would like to consider big size
problems that could not be solved using the usual musi-
cal constraint programming systems.
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