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This paper describes programming techniques used in my composiƟon AffectaƟons/Torso to organize large-scale form to facilitate future revision, in-
cluding the complete replacement of its original performance interface with a gesture-driven, touchless interface. This arƟcle covers my approach to
large-scale structure in interacƟve computer music before discussing code design errors, specifically Ɵght coupling between components, that com-
plicate interface changes. The issues are general to any programming environment for interacƟve sound art; examples are in the object-oriented
programming language SuperCollider, and a final example in Pure Data shows how the same principles may apply in graphical patching environments.

AffectaƟons (2010-2011) is a 45-minute modern dance 
piece, with choreography by Laura Schandelmeier and 
Stephen Clapp of Dance Box Theater in Maryland, USA,1 

live visuals and moƟon detecƟon by Lorne Covington,2 

and music by myself, wriƩen using SuperCollider Server 
soŌware (McCartney 2002). Torso is the fourth of five 
movements. In 2013, I extracted this movement for 
separate performance and added a layer to control the 
performance by movement in front of the computer’s 
webcam.

• Graphic User Interface (GUI) objects in
SuperCollider itself, for tesƟng;

• Open Sound Control messages from the video
soŌware, running in vvvv.3

To meet this requirement, I designed the original code to 
separate the musical sequence from the user-interface 
mechanisms. It is this separaƟon that made it easy to add 
a new control mechanism aŌer the fact.

This arƟcle describes this separated object design and il-
lustrates how object-oriented design principles address 
problems that musician-programmers will face in larger 
projects sooner or later. It is not a programming tutorial; 
rather, it aims to expose musicians to some higher-level 
“programmers’ secrets” that help to organize projects 
that are easier to maintain going forward, and even open 
up creaƟve possibiliƟes in the short term.

The complete code for AffectaƟons/Torso is available 
for download from https://github.com/jamshark70/
affectations-torso.4

Object-Oriented Programming concepts

SuperCollider is an object-oriented programming (OOP) 
language, and object-oriented design informs my 
soluƟons for large-scale form and external control. I do 
not assume readers will be deeply familiar with OOP, so I 
introduce the primary concepts here, as summarized in 
Table 1.

Many interacƟve computer musicians use programming
environments for music, such as SuperCollider, ChucK,
Max/MSP and Pure Data. Some have prior programming
experience, but it is more common to learn “on the
job,” picking up enough programming tricks to create
interesƟng performances, but not necessarily enough to
evaluate programming strategies and choose designs that
are beƩer able to absorb new demands in the future.
SoŌware design is not always necessary for a successful
musical work; the larger the project, however, the more it
benefits from “big-picture” code organizaƟon.

In my composiƟon AffectaƟons, I had created one of these
forward-looking designs to handle one of the project’s
central requirements. Later, when I wanted to revise one
movement into a solo work, it turned out that this design
solved a number of problems essenƟally “for free.” The de-
sign was so successful that I have already used it in subse-
quent work.

The original concepƟon of AffectaƟons used infrared cam-
eras to track the dancers’ movements and control the mu-
sic’s flow. The video-control planwas not fully realized; sƟll,
the musical code needed to be able to handle two control
sources:

I will begin with some brief notes on object-oriented pro-
gramming and on structuring interacƟve computer music
in terms of mulƟple structural layers, and apply object-
oriented design principles to the problem of incorporaƟng
user control into higher levels of musical structure. I will
briefly cover the design of the video control components,
and concludewith an example in PureData to demonstrate
how similar design principles can work in graphical patch-
ing environments.
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Term Purpose
Class Defines an object’s data structure and interface.
Instance Uses the class definiƟon to store real data and do real work.
Interface The list of an object’smethods. In pure OOP, the public interface is the only way to use an object.
Method Represents an acƟon the object can perform. It takes arguments (input data) and returns a result.
Polymorphism Allows the same method name to take different, sensible acƟons in different objects.
Inheritance Allows a new class to be based on an exisƟng one. The new class inherits data structure and

methods from its superclass.
Design paƩern Away of structuring classes into replaceable, decoupled components that encourages code reuse

and later extensibility.

Table 1. Key Object-Oriented Programming terms.

Phone Direct connecƟons needed Unique connecƟons Hub connecƟons needed
A A←→ B, A←→ C, A←→ D 3 A←→ Hub
B A←→ B, B←→ C, B←→ D 2 B←→ Hub
C A←→ C, B←→ C, C←→ D 1 C←→ Hub
D A←→ D, B←→ D, C←→ D 0 D←→ Hub

Total 4·3
2 = 6 4

Table 2. ConnecƟons required in a 4-telephone network, comparing direct connecƟons against a hub. “Unique connecƟons” does not count duplicates.
A←→ B is counted in the A line, but not the B line.

OOP’s principal innovaƟon is to bundle a data structure and
acƟons that can be performed on the data structure into a
single package called an object. Every object belongs to a
class; a class defines the variables represenƟng the data
structure and themethods that declare the acƟons. A new
class can build on an exisƟng class through inheritance, in
which the new class has access to the enƟre data structure
of its parent class, as well as the parent’s set of methods
(which it can use unchanged, or overwrite with a new def-
iniƟon specific to the new class).

This set of methods is called the object’s interface, reflect-
ing the object-oriented paradigm shiŌ: focusing on what
an object can do rather than what kind of object it is. This
shiŌ of focus allows one object to masquerade as another,
by polymorphism. Two classesmay have very different data
structures, but implement some method names in ways
that are compaƟble with each other. In SuperCollider, for
instance, GUI objects change the displayed data using the
value_method, but the visible impact is very different for
buƩons, number boxes, sliders, pop-up menus and so on.

Polymorphism makes it possible to build complex systems
out of simpler, reusable components. Two objects with a
common interface can do different work in response to
the same orders, “plugging into” the same part of a larger
system. For instance, in AffectaƟons/Torso, each secƟon
needs to react differently to video data coming from the
laptop’s webcam. A straighƞorward implementaƟon uses
a different video-response object for every secƟon. Each
of these objects receives video data and triggers events
in the same ways. Only the logic between input and out-
put is different; that is, the objects communicate idenƟ-

cally but do different work. Because of the idenƟcal com-
municaƟon, the first secƟon can plug its video responder
into the system and the program responds to one set of
gestures. When that secƟon ends, it unplugs the video re-
sponder; then the second secƟon plugs in a different one,
and the program now reacts to a different set of gestures.

Object design: Tight vs. loose coupling

Object design is the pracƟce of decidingwhich objects han-
dle which requirements and standardizing the interfaces
by which these objects should cooperate. Object-oriented
design draws an important disƟncƟon between Ɵght and
loose coupling.

Object coupling is an abstract concept; an analogy may
clarify. One way to connect telephones in a wired network
is to install physical lines between every pair of phones.
This is Ɵght coupling. It seems like the easiest way to go—
what could be simpler than direct connecƟons? However,
it does not scale easily to larger networks. A network of
only four telephones requires six direct connecƟons (Table
2). For any number of telephonesn, the number of connec-
Ɵons is the sum of integers 1 to n − 1:

∑n−1
k=1 k. This may

be calculated more simply as n(n−1)
2 : a quadraƟc calcula-

Ɵon. QuadraƟc systems are especially inefficient. In a lin-
ear system, the cost of adding new components is roughly
the same, no maƩer howmany components there were to
begin with. QuadraƟc growth means that the cost of one
new component grows with the size of the system. Adding
one telephone to a four-telephone network requires four
new connecƟons; adding one to a hundred-telephone net-
work would need a hundred new connecƟons, in addiƟon
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to the 100·99
2 = 4, 950 connecƟons that already existed.

Tight coupling in soŌware, similarly, is a trivially simple de-
sign concept which becomes unmanageable in pracƟce as
the system grows.

The actual structure of telephone networks, with groups of
endpoints feeding into hubs, reduces the number of con-
necƟons dramaƟcally. If four telephones connect to one
hub, then you need only four connecƟons. 100 phones
need 100 connecƟons (a considerable savings over the
nearly 5000 direct connecƟons thatwould be needed), and
adding one new unit adds only one connecƟon, whether
the system is small or large. This is loose coupling, in which
communicaƟon goes through an intermediary. The inter-
mediary adds a small amount of complexity to the design
structure—for the smallest networks, the structural over-
head may not be worth it—but as the network grows, the
structure vastly simplifies the shape of the network and
makes the whole much easier to maintain.

In soŌware, the nature of the communicaƟon between ob-
jects is at least as important as the number of connecƟons.
Two forms of Ɵght coupling are direct references to objects
and communicaƟng specific acƟons to other objects.

Direct references to objects. Problem: Themore direct ref-
erences, the harder it is to keep them consistent with each
other, especially if those connecƟons are scaƩered among
a large number of objects.

SoluƟon: Keep references in hubs. With fewer places to
handle references, the chance of mistakes is reduced. The
triggering strategy in this paper uses exactly such a hub.

CommunicaƟng specific acƟons to other objects. Prob-
lem: It is not always possible to predict the specific re-
sponses required for one object’s change of state. Cod-
ing toward specific acƟons locks the program into those
specifics. Even very simple future requirements would re-
quire changes in the communicaƟon protocol.

SoluƟon: Communicate what happened rather than what
to do. If a synthesis parameter should be reflected in a
graphical user interface (GUI), it should communicate only
that its value changed. The GUI object would receive the
noƟficaƟon and take its own appropriate acƟon. Other ob-
jects are free to respond to in a different, equally appropri-
ate, ways.

Decoupling is so important to the design of large programs
that enƟre books are devoted to design paƩerns: object
structures that promote reusability. The most notable of
these, sƟll influental aŌer nearly twenty years, is Design
PaƩerns: Elements of Reusable Object-Oriented SoŌware
(Gamma et al. 1995). The techniques presented here rely
on two design paƩerns, related to the two forms of Ɵght
coupling listed above.

• AMediator is a hub that connects any number
of senders and receivers, without the senders
having to be aware of the receivers and vice
versa.

• An Observer registers with another object
(called the “model” or “subject”) to receive
updates. The model broadcasts noƟficaƟons to
all registered observers. The messages to be
broadcast are abstract, rather than specific
commands.

• TheModel represents the parameter’s value.
When it changes, it broadcasts a noƟficaƟon.

• The View is any reflecƟon of that value that is
percepƟble to the user: a slider or knob on
screen, audio synthesis, or display on an external
device.

• The Controller is the Mediator that connects the
Model to its physical View. It registers as an
Observer of the Model, and manipulates the
View in response to “changed” noƟficaƟons. If
the View is an interface object that the user can
touch, the Controller sends the new informaƟon
to the Model, whose noƟficaƟon pushes the
new value to every other Controller.

It is slightly more complex iniƟally to implement MVC
rather than direct connecƟons for parameter control,
though it becomes easier with pracƟce. It is worth the
effort, however, as MVC makes it trivially easy to add new
interface components. The Model is the hub previously
menƟoned. Other objects connect only to the hub, sim-
plifying the channels of communicaƟon and reducing the
likelihood of bugs.

Control over large-scale form

Musical composiƟons operate at mulƟple structural lev-
els simultaneously; when the composiƟon is expressed in
code, it makes sense to organize these levels into disƟnct
objects. Table 3 summarizes the levels at which I tend to
work, beginningwith themost detailed levels and proceed-
ing to higher levels of organizaƟon.

For sonic events, I favor SuperCollider’s built-in event and
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The concrete benefits of these paƩerns will become appar-
ent through the discussion of the implementaƟon details 
of AffectaƟons/Torso. This discussion focuses on triggering 
events, but the techniques apply generally to any commu-
nicaƟon between discrete components. For example, syn-
chronizing parameter values with graphical displays and 
external control devices benefits from the Model-View-
Controller architecture (Krasner / Pope 1988). A com-
plete discussion of MVC is beyond this arƟcle’s scope, but 
here is a brief summary:



Level Responsible objects Typical duraƟon
Sonic events Event 60ms - seconds
Gestures Process; PaƩern Seconds
SecƟons SecƟon Seconds, minutes
Whole composiƟon SecƟon sequencer Minutes, hours

Table 3. Hierarchical levels in my SuperCollider composiƟon framework.

40 beats

15 beats

rumble

whine

Figure 1. Graphical view of two overlapping processes.

TLSequenceIterator ([
bpCmd: (name: \rumble , dur: 40),
15,
bpCmd: (name: \whine , dur: 20)

]);

LisƟng 1. Simple sequencer, implemenƟng the musical flow from Figure 1.

paƩern framework (Kuivila 2011).5 An Event object pro-
duces one sonic event, typically a note; PaƩern objects
generate sequences of Events. A paƩern almost always
depends on other resources: a unique audio bus for mix-
ing at minimum, but possibly also including effect proces-
sors, buffers containing sampled audio or wavetables and
the like. A musical process combines a paƩern with all its
resources into a single package (Harkins 2011). Playing a
process produces one or moremusical gestures; processes
may naturally overlap to build complex textures. These ob-
jects represent the detail layers of musical structure.

In my solo performances, I manage higher levels of struc-
ture by controlling the behavior of process objects, by issu-
ing text commands to the objects while onstage or using a
MIDI controller. I could not be present for all performances
of AffectaƟons; thus, the soŌware had to be able to do au-
tomaƟcally what I would do by hand if I were onstage. For
this purpose, I developed a Ɵmeline sequencer, published
as an extension package called “ddwTimeline,”6 which per-
forms lists of command objects.7

For example, in a live performance, I might start a low
rumbling sound, and add a high-pitched whine some sec-
onds later (Figure 1). The sequencer expresses this simple
case in a way that reflects the temporal layout, as shown
in LisƟng 1. The first line inside the TLSequenceIterator
is a bpCmd, or “Bound-process command,” which plays
the rumble process and stops it aŌer 40 beats. AŌer 15
beats, another bpCmd plays the whine for 20 beats. The

commands are wriƩen sequenƟally but may overlap. The
Ɵming between them can be controlled by specific dura-
Ɵons as here, calculated duraƟons (which may introduce
randomness), or by responding to some commands’ state
changes. The last of these supports user-trigger control, to
be covered in the next secƟon.

Above this, a secƟon object can generate and play one
or more sequences, and a list of secƟons consƟtutes the
piece. If the secƟons are carefully wriƩen and correspond
to rehearsal marks in a score, performers can start the
electronics at any mark, facilitaƟng rehearsal. Also, I find
that the separaƟon between processes, sequences and
secƟons helps with the creaƟve process. While working
on higher-level form, I can focus on higher-level code that
omits the details of musical gestures: a “zoomed-out”
view. If a gesture needs some adjustment, I can drop down
to the process level to zoom in on the details without being
distracted by higher-level concerns.

Large-scale Ɵming by triggers

InAffectaƟons and other ofmyworks, the duraƟons of sec-
Ɵons, and cues within secƟons, may vary according to the
performers’ acƟons. That is, the sequencer must run some
processes and then wait for input before proceeding to
the next command. The ddwTimeline framework uses sync

40 Emille, the Journal of Korean Electro-Acoustic Music Society Vol. 11 (2013)

H. James Harkins – Affectations/Torso: A case study in future-proofing interactive computer music through robust code design



TLSequenceIterator ([

synthCmd: (name: \default , freq: 60. midicps , dur: 0.8),
\cmdSync ,
synthCmd: (name: \default , freq: 64. midicps , dur: 0.8),

]). play;

LisƟng 2. Simple sync-keyword example in ddwTimeline.

(
~trigParms = (

id: \button ,
setDoneSignal: {

~doneSignal = true; // tells funcCmd to wait
(inEnvir {

var center = Rect.aboutPoint(Window.screenBounds.center , 50, 35);
~button = Button(nil , center)

.states_ ([["GO"]])

.action_(inEnvir { ~stop .() })

.front;
}). defer;

},
clearDoneSignal: {

(inEnvir { ~button.close }). defer;
}

);

t = TLSequenceIterator ([
synthCmd: (name: \default , id: \c, freq: 60. midicps),
funcCmd: ~trigParms ,
\cmdSync ,
funcCmd: (func: { ~iterator.findActive (\c).stop }), // stop previous note
synthCmd: (name: \default , id: \e, freq: 64. midicps),
funcCmd: ~trigParms ,
\cmdSync ,
funcCmd: (func: { ~iterator.findActive (\e).stop }),
synthCmd: (name: \default , freq: 67. midicps , dur: 0.8),

]). play;
)

LisƟng 3. External trigger by a GUI buƩon.

keywords for this. Sync keywords themselves do not incor-
porate any user acƟon to resume the sequence. They sim-
ply pause the sequence unƟl one or more previous com-
mands finish:

• \sync: Pause the command sequence unƟl all
prior commands come to an end (note that it is
the sequence of commands which pauses, while
the commands themselves conƟnue to operate);

• \cmdSync: Pause the sequence unƟl the
immediately prior command comes to an end,
ignoring the status of other previous commands.

What does it mean to say that a command has come
to an end? Figure 1 shows that commands occupy Ɵme:
they begin, remain acƟve for some Ɵme, and then stop.
When a command stops, it communicates that fact back to

the sequencer. The “stopped” noƟficaƟon from the com-
mand may clear the condiƟon for which the sync keyword
was waiƟng, allowing the sequence to conƟnue. LisƟng 2
demonstrates. A synthCmd plays a single synthesis node
on the server. The \cmdSync keyword takes effect imme-
diately aŌer the synthCmd starts, pausing the sequencer.
The parameter dur: 0.8 tells the command to stop it-
self aŌer 0.8 beats. At that moment, cmdSync’s condiƟon
has been saƟsfied and the sequencer conƟnues to the next
synthCmd.

User-input triggers

Any command object can expose a user trigger by creat-
ing one or more objects that respond to user input. At

에밀레 – 한국전자음악협회 학술지 제11권 (2013) 41

에이치 제임스 하킨즈 – 꾸밈/몸통: 강건 코드 설계를 통한 미래 지향형 상호작용 컴퓨터 음악에 대한 사례 연구



Sequencer

trigCmd trigCmd

GUI
objects

MIDI
responders

Video
control

Sequencer

trigCmd trigCmd

GUI
objects

MIDI
responders

Video
control

Mediator

Register;
receive triggers

Mediator
creates GUIs

Free-standing;
one-way comm.

a. Embedded approach: Every trigCmd is
responsible for all responders. Changes
must be repeated for every trigCmd.

b. Decoupled approach: TrigCmds
connect to one object, no matter how
many responders there are.

Figure 2. SchemaƟc comparison of embedded vs. decoupled approaches.

a command’s onset, a hook (setDoneSignal) allows the
command to create addiƟonal resources; at the end, an-
other hook (clearDoneSignal) releases them. The com-
mand should also set a variable, ~doneSignal, so that the
command will stay acƟve unƟl the user trigger arrives, or it
runs out of work to do. An example may be found in LisƟng
3. This example installs a clickable Button as the user-input
responder.8 When clicked, the buƩon runs an action
funcƟon; here, the acƟon stops the funcCmd: ~stop.().
Once the funcCmd is finished cleaning up, cmdSync is free
to allow the sequence to conƟnue and play the second
note.

In a composiƟon, the commands between user triggers
would be far more complex, controlling process objects in-
stead of single notes. Also, the commandmay use any kind
of object that responds to external informaƟon (typically
MIDI or OSC receivers). The triggering principle remains
the same in all cases.

Embedded triggers: Problem

The above design embeds the user interface objects into
the trigger commands. Each trigger command must create
and destroy all the user interface objects it needs. Figure
2a illustrates the Ɵght coupling this structure implies. The
riskiest element is that every user interface object must
know the specific trigger command to stop. If this infor-
maƟon is faulty, or an interface object was not removed
properly (poinƟng to a stale command), unpredictable be-
havior ensues.

LisƟng 3 inadvertently makes it difficult to fire the trig-
ger by any means other than the GUI buƩon. The GUI
buƩon stops the enclosing funcCmd; if we can stop the
same command in code, then any trigger source could do
the same. The funcCmd is marked with an ID \button,
and the sequencer can locate command objects by ID:
t.findActive(\button).stop.

This approach is neither convenient nor elegant. It is odd
to make the sequence go forward by telling something to
stop. Surely it would be more logical to tell some object
to do a trigger instead. In fact, this is a common problem
in object-oriented programming: a programming interface
(the set of methods required to accomplish a task) is de-
signed for one job, but later pressed into service for a dif-
ferent job. The old programming interface is oŌen inappro-
priate for the new task.

SoluƟon: TheMediator design paƩern

The typical object-oriented soluƟon is to create a new class
of object whose interface is designed specifically for the
task at hand. For this situaƟon, the new object should:

• Provide a central locaƟon toward which
user-interface objects can direct triggers;

• Forward triggers to any number of objects that
are expecƟng a trigger.

The Mediator design paƩern stands between related ob-
jects, providing a standardized channel of communicaƟon
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(
Proto {

~prep = {
~registered = IdentitySet.new;
~makeResponder .();
Environment.current

};
~freeCleanup = { ~clearResponder .() };
~makeResponder = {

(inEnvir {
~button = Button(nil , Rect(Window.screenBounds.right - 100, 0, 100, 70))

.states_ ([["GO"]])

.enabled_(false)

.action_(inEnvir { ~doTrigger .() })

.front;
}). defer;

};
~clearResponder = {

(inEnvir { ~button.close }). defer;
};
~addClient = { |client|

if(~ registered.includes(client )) {
"BP(%): Tried to re-register a previously -registered object"
.format (~ collIndex.asCompileString ).warn;

} {
~registered.add(client );
~addClientHook .();

};
};
~addClientHook = {

(inEnvir { ~button.enabled = ~registered.isEmpty.not }). defer;
};
~removeClient = { |client|

if(~ registered.includes(client )) {
~registered.remove(client );
~removeClientHook .();

};
};
~removeClientHook = { ~addClientHook .() };
~doTrigger = { |trigId|

~registered.do { |client|
client.doTrigger(trigId );

}
};

} => PR(\ trigMediator );
)

LisƟng 4. A simple trigger mediator.

에밀레 – 한국전자음악협회 학술지 제11권 (2013) 43

에이치 제임스 하킨즈 – 꾸밈/몸통: 강건 코드 설계를 통한 미래 지향형 상호작용 컴퓨터 음악에 대한 사례 연구



(
PR(\ funcCmd ).clone {

~doneSignal = true;
~mediator = \trigMediator;
~setDoneSignal = {

BP(~ mediator ). addClient(currentEnvironment );
};
~clearDoneSignal = {

BP(~ mediator ). removeClient(currentEnvironment );
};
~doTrigger = { ~stop .() };

} => PR(\ trigCmd );
)

LisƟng 5. A Ɵmeline-command to wait for a signal from the mediator.

(
// Create the mediator and MIDI controller once.
BP(\ trigMediator ).free; PR(\ trigMediator) => BP(\ trigMediator );

~pedalCtl.free;
~pedalCtl = MIDIFunc.cc(inEnvir { |val|

if(val > 0) { BP(\ trigMediator ). doTrigger; };
}, 64);
)

(
TLSequenceIterator ([

{ "one". postln; 0 },
\trigCmd ,
\cmdSync ,
{ "two". postln; 0 },
\trigCmd ,
\cmdSync ,
{ "three". postln; 0 },
\trigCmd ,
\cmdSync ,
{ "stop". postln; 0 }

]). play;
)

LisƟng 6. Using the mediator in a sequence, with addiƟonal MIDI control.

so that the objects on either side can come and go inde-
pendently. Figure 2b illustrates the Mediator design pat-
tern applied to to this situaƟon.

LisƟng 49 defines a simple mediator for triggers. It ad-
dresses all the problems of embedded triggers noted
above. Stale user interface objects are not a problem;
in the example, the mediator creates one buƩon that is
reused for all triggers. The buƩon does not have to know
which commands are waiƟng for triggers. It simply calls
the mediator’s central triggering locaƟon: doTrigger.

As in LisƟng 3, a specific command object must appear in
the sequence wherever the flow should pause for a trig-
ger. A suitable command definiƟon is found in LisƟng 5,10

and its usage is demonstrated in LisƟng 6. The mediator
will call doTrigger on it, so the commandmust implement
this method name in a way that is appropriate, namely
~stop.(). The command must also tell the mediator that
it is interested in triggers, by registeringwith the trigger ob-
ject, using addClient and unregistering itself aŌer receiv-
ing the trigger, by removeClient. Where setDoneSignal
and removeDoneSignal respecƟvely created and removed
a Button in LisƟng 3, now they should simply connect to
the mediator.

Returning to the issue at the heart of this arƟcle: Does this
structure simplify the addiƟon of a new control mecha-
nism? Indeed, it does: in LisƟng 6, it requires a mere four
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lines of code to add a MIDI foot switch controller (see
pedalCtl). Like the buƩon, the pedal control needs only to
call doTrigger on the mediator when the pedal is pressed
(val > 0 tests whether the pedal has been pressed or re-
leased). Both the buƩon and the foot switch go through
doTrigger; thus the response to the pedal is exactly the
same as clicking the buƩon with the mouse. There is no
need to modify the sequence or the definiƟons of the me-
diator or trigger command; the sequence will run equally
well with or without MIDI.

This design is why it was easy to add video control to Affec-
taƟons/Torso. The video control logic was not simple, but
connecƟng it to the trigger mediator was precisely as easy
as in LisƟng 6’s MIDIFunc. This eliminated a whole class of
code-integraƟon problems and allowedme to focus on the
video-analysis problems.

Video control implementaƟon

Space does not permit a complete descripƟon of the
video-control system in AffectaƟons/Torso. I will present
an overview, however.

Flow of data

Figure 3 illustrates the data flow graphically. SuperCollider
does not feature built-in video input, so I usedGEM (Graph-
ics Environment for MulƟmedia) objects in Pure Data to
process webcam images. The Pure Data patch uses a sim-
ple frame-difference technique to idenƟfy areas of the
frame that are in moƟon.11 The patch then divides each
image into a 3x3 matrix of sub-frames, and sends an OSC
message to SuperCollider for each sub-frame, containing
the centroid coordinates12 and a relaƟve measure of the
amount of movement. One addiƟonal message gives the
same staƟsƟcs for the enƟre frame. The performance dis-
play is shown in Figure 4.

In SuperCollider, a VideoListener object receives the OSC
messages and, in another use of the Observer design pat-
tern, noƟfies any registered clients that a new set of analy-
sis data are ready. In AffectaƟons/Torso, the clients watch
for specific triggering condiƟons and call into the trigger
mediator to fire. As already shown, this clears any acƟve
sync keywords, allowing the sequence to advance.

Video trigger objects

The performance would be boring to watch if every video
trigger followed the same gesture; so, each secƟon needed
its own unique analysis funcƟons. Recall that objects are
interchangeable if they have compaƟble interfaces; so,
each secƟon’s video logic should be wrapped into objects
with consistently named methods. In LisƟng 7, prRespond

is the main hook; when the VideoListener broadcasts
that a new frame’s worth of data are ready, the video
analyzer object calls prRespond, which then delegates to
other funcƟons (e.g. nextSegCheck and respond) to do
the work. Replacing these lower-level funcƟons with other
logic will change the behavior of the video response, with-
out changing the standard entry point.

It is simple, then, to have different analysis behaviors in
each secƟon by removing one analyzer object and adding
another. In my composiƟonal framework, a secƟon object
can create and remove any resources it needs at transi-
Ɵon points. LisƟng 8 shows where the video analysis ob-
jects come and go: the first item in the sequence creates
the analyzer; the onStop funcƟon, executed when the sec-
Ɵon ends, removes it. Thus, only one analyzer exists at any
Ɵme, and the analysis logic can change without affecƟng
any other components.

The analyzers use a variety of techniques to fire triggers:
watching for the centroid to move to a specific part of
the frame, comparing the amount of movement against a
threshold, or even, in the final secƟon, tracking the cen-
troid to see when it moves from the right side of the frame
to exit past the leŌ edge.

Video data always have some jiƩer above and below a gen-
eral trajectory. Tests for triggers should therefore cover
several data points: one data point meeƟng a condiƟon
maybe an aberraƟon,while five or six consecuƟvematches
are unlikely to be accidental. For example, some of Torso’s
secƟons begin when one hand moves toward the top of
the frame. If everything else is more-or-less sƟll, the cen-
troid will follow the moving hand, causing its y coordinate
to decrease (centroid coordinates are normalized: −1 ≤
y ≤ 1). The top third of the frame is y < −0.33; how-
ever, y may jump into that range briefly even though the
“true” centroid is closer to the frame’s center. The analyzer
should ignore such brief glitches. So, it specifies a number
of consecuƟve “hits” (segReqd); when the y condiƟon is
met, the analyzer counts down from this number and only
fires when it reaches 0. If the condiƟon fails, the counter
resets and there is no trigger.13

This type of logic figured into so many secƟons that I di-
vided the test among several funcƟons, allowing me to
override parts of the test while reusing the overall logical
form (LisƟng 7): nextSegCheck and resetSegCheck han-
dle the counƟng, and nextSegCondition is the specific
test based on the video data. In addiƟon to checking the
y coordinate, the normmag test in nextSegCondition en-
sures that there is enough movement in the frame to be
meaningful. (Without enough frame movement, the cen-
troid posiƟon is based on video noise rather than a solid
reading, and is thereby unpredictable.) To match a dif-
ferent gesture, I need only to replace nextSegCondition
with a different one, e.g. ~model.centroid.y > 0.33
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Figure 3. Flow of data in Torso’s video control. Dashed boxes indicate temporary objects.

Figure 4.Display of video performance interface. To the leŌ is the GEMwindow in Pure Data, showing the frame difference, where lighter pixels indicate
more movement. At right is a representaƟon of the video data received in SuperCollider. I am standing sƟll and moving my hand in the middle of the
frame. The gray rectangle, just above center in the right window, shows the centroid (center of movement).

46 Emille, the Journal of Korean Electro-Acoustic Music Society Vol. 11 (2013)

H. James Harkins – Affectations/Torso: A case study in future-proofing interactive computer music through robust code design



Proto({

// ... initialization methods omitted ...

~segReqd = 6; // reqd for transition to next section
~segTrigCount = 0;
~segRange = [0.008 , 0.25];
~nextSectionThresh = -0.33;
~segTrigCount = ~waitBeforeAdvance;

// called when a new analysis frame is ready
~prRespond = { |obj , what , moreArgs|

switch (~ nextSegCheck .()) // perform the test: 3 outcomes
{ \goAhead } { // Got a trigger: fire!

BP(\ segTrig ). doTrigger;
}
{ \respond } { // Trigger failed; reset the test

~resetSegCheck .();
~respond.valueArray(obj , what , moreArgs );

}
{ \notYet } { // Trigger *might* complete , so don 't reset

~respond.valueArray(obj , what , moreArgs );
};

};

// If condition is true , count down; trigger when it reaches 0.
// If a test fails , count will reset.
~nextSegCheck = { |obj , what , moreArgs|

if(~ nextSegCondition .()) {
~segTrigCount = ~segTrigCount - 1;
if(~ segTrigCount == 0) { \goAhead } { \notYet }

} {
\respond

};
};

// You can override this to use a different test.
~nextSegCondition = {

~model.normmag.inclusivelyBetween (*~ segRange)
and: { ~model.centroid.y < ~nextSectionThresh }

};
~resetSegCheck = { ~segTrigCount = ~segReqd };

}) => PR(\ abstractVizTrig );

LisƟng 7. A trigger based on a threshold, using a counter to eliminate false posiƟves.

to catch the centroid moving into the boƩom third of the
frame.

ConƟnuous parameter control

In some secƟons of the piece, video data also control com-
posiƟonal or synthesis parameters, such as the relaƟve
speed of notes or a frequency modulaƟon index. In LisƟng
7, prRespond calls an opƟonal funcƟon labeled respond,
which handles any arbitrary reacƟon to the video data, in-
cluding parameter mapping. This funcƟon is called when-
ever video data come in but the secƟon trigger should not

fire. (If the trigger fires, then this analyzer object will be re-
moved and any mapping within respondwould be invalid;
there is no need to call it in that case.)

Mapping video data to a parameter may be as simple
as converƟng the incoming data from one range to an-
other and seƫng the parameter. SuperCollider has a num-
ber of methods for range mapping: linlin to map a lin-
ear range onto another linear range, linexp for linear-to-
exponenƟal, and so on. Recall that the centroid coordi-
nates range from -1 to 1; linexp can easily convert this to,
e.g., a filter cutoff, as in ~model.centroid.y.linexp(-1,
1, 16000, 100). -1 is the top of the video frame and cor-
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PR(\ tlSection ).copy.putAll ((

name: "T2030",
// ... initialization and cleanup ...
seqPattern: {

Pn((
sequence: [

{

// create this section 's video analyzer:
if(topEnvironment [\ useVideo ]) {

Fact(\ t2030trig) => BP(\ t2030trig );
};

// ... reset processes to this section 's state ...

0
},
// ... commands for this section ...

],
// 'onStop ' occurs when the section stops ,
// removing the video analyzer

onStop: { BP(\ t2030trig ).free },
// ... additional sync information ...

), 1)
}

))

LisƟng 8. Outline of a secƟon object, showing where video analyzer objects are created.

responds to the higher cutoff frequency of 16000 Hz. Then
the respond funcƟon can set any type of control based on
the new value. Because the respond funcƟon can hold any
logic, mapping may be far more complex than this

Trigger dispatch in Pure Data

Graphical-patching environments, such as Max/MSP by
Cycling ‘74 and the open-source project Pure Data, are
widely used for interacƟve audio art. Their design, fea-
turing graphical object boxes connected by virtual “patch
cables” connecƟng outputs from one object to inputs of
another, is radically different from that of object-oriented
code; sƟll, the principle of decoupling to support future re-
vision holds true. The remainder of the arƟcle describes
a patch in Pure Data that decouples user interface objects
frommusical flow. The patch translates easily toMax/MSP.

Three main concerns guided the design of the dispatcher
in Pure Data:

• Reusability: It should be possible to use the
trigger-dispatch mechanism in many
composiƟons, with only minimal adjustments.

• Scalability: It should be able to handle 5 or 50
triggers, without cluƩering the screen with too
many patch cables.

• Unified programming interface: Just as LisƟng 4
allows triggers to be directed to a single point,
doTrigger, the Pure Data mechanism should
provide a single trigger locaƟon, addressable
from anywhere in the patch.

For reuse, the triggering logic is encapsulated into an ab-
stracƟon (graphical-patcher terminology for a patch saved
on disk that may be embedded in another patch). The en-
Ɵre abstracƟon, shown in Figure 5, is analogous to the me-
diator in the SuperCollider examples. It presents a small
interface with three control buƩons and a display of the
current secƟon’s name, using Pure Data’s “Graph On Par-
ent” feature.14 It cannot assume that every composiƟon
will contain the same secƟons, so it provides an [inlet]
at the top to receive a list of secƟon names. A composi-
Ɵon may send the list of secƟons to the inlet while loading
the patch by triggering a message box using [loadbang],
as shown in Figure 6b. This also supports scalability, as the
secƟon list may be arbitrarily long.

Both the decoupling and the single locaƟon for triggers
come from [send] and [receive] pairs. Normally, mes-
sages travel along visible “patch cables,” while [send] and
[receive] transmitmessages “wirelessly”; [send] broad-
casts a message to a specific name, and all [receive] ob-
jects with the same name get that message. This mecha-
nism is inherently more loosely coupled than patch cables,
because a new sender or receiver may be added anywhere
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Figure 5. Dispatcher abstracƟon implemented in Pure Data.

a. Subpatch: Play one note. b. Main patch: Complexity is hidden in the triggering
abstraction (left) and subpatches.

Figure 6. Simple examples using the dispatcher abstracƟon.
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in the patch (even in different abstracƟons or subpatches)
with no need for an explicit connecƟon.

The central triggering locaƟon is a receiver: [receive
sectctl_next]. The “next” buƩon sends a bang to
this receiver, and any other control mechanism can do
likewise. A simple way to add video control would be to
add a subpatch, such as [pd video_control] in Figure
6b, which contains the video analysis logic and outputs a
bang to feed to the sectctl_next receiver. Another type
of control could be implemented in the same way, without
modifying the triggering abstracƟon or any musical logic.

The triggering mechanism must also communicate with
the piece’s secƟons. The strategy from SuperCollider, in
which triggering commands register with the mediator,
does not apply in Pure Data because all [receive] ob-
jects are acƟve all the Ɵme; there is no way to unregister
them. Instead, a seldom-used feature of [send] allows it
to change its name to a symbol received in its right-hand
input.15 Thereby, one [send] object can, at one Ɵme, di-
rect messages toward a secƟon called “one,” and later to-
ward a different secƟon called “two.” The list of secƟon
names should feed this right-hand input, one secƟon at a
Ɵme. Normally an enƟre list travels in a single message. A
[list-dripslow] object parcels out the list items one by
one, and receives its bang from the central triggering loca-
Ɵon.16

This example defines aminimal protocol, sending a gomes-
sage to a secƟon name when the secƟon starts and stop
when it should end. (The stopmessage is not opƟonal. Re-
hearsals will oŌen stop the piece in the middle, calling for
a message disƟnct from “go to the next secƟon.”) The logic
underneath [list-dripslow] ensures that the currently-
playing secƟon gets its stopmessage at the same Ɵme the
next secƟon receives go. If a composiƟon requires a dif-
ferent messaging protocol, it may be implemented here.
SecƟons may be created as subpatches, using [route go
stop] to start or stop the secƟon, as in the very simple
example in Figure 6a. The secƟon subpatches may be arbi-
trarily complex.

Depending on the needs of a specific composiƟon, it may
be necessary to adjust the logic. SƟll, the fundamental de-
sign separates triggering from musical logic and, just as in
SuperCollider, exposes areas within the patch to add new
mechanisms.

Conclusion

Programming for interacƟve composiƟons or sound art is
similar to other kinds of programming in an important re-
spect. Structures that are too simple (e.g. too many direct
connecƟons) work well for very simple behaviors. Mov-
ing toward more complex behaviors quickly reveals limi-
taƟons, in parƟcular, the risk that one change may force

several other changes, which may call for further changes
ad infinitum. Foresight in the early stages of creaƟon helps
to bypass these limitaƟons.

In this regard, digital arƟsts are at a disadvantage com-
pared to convenƟonal soŌware developers. TradiƟonal,
top-down models of soŌware development begin with
“gathering requirements” before drawing up specificaƟons
for program behavior—all before wriƟng any code. Careful
specificaƟonsmake it easier to plan object designs tomeet
not only current requirements but also allow room to han-
dle future needs.

Digital arƟsts are more likely to discover the requirements
by experimenƟng with incomplete code. The work of art is
the system’s behavior, andwe do not knowhow the system
should behave unƟl we interact with rudimentary proto-
types. (In fact, my own creaƟve process beginswith poorly-
structured code, but I move quickly to package interest-
ing behaviors into process objects. These processes al-
low conƟnued experimentaƟon and at the same Ɵme sup-
port object-orientedmodeling, making it easy to introduce
loose-coupling strategies as soon as they are needed.) At
this extremely simple stage, the benefits of loose coupling
are not apparent, and the cost of creaƟngObservers,Medi-
ators and other extensible components can appear to be a
waste of Ɵme. This arƟcle has demonstrated, on the other
hand, how an open-ended object design for external event
triggers facilitated a new version of AffectaƟons/Torso, car-
rying the work forward into the future in a way that would
have been considerablymore difficult had the components
been Ɵghtly coupled.

RestricƟve code designs may impose a hidden cost during
iniƟal creaƟon as well. As noted, the creaƟve process be-
gins with simple prototypes of behaviors that will grow in
complexity before arriving at a compelling result. Design
shortcuts (Ɵght coupling, direct connecƟons) are tempt-
ing, but they concretely impede the “free play” of ideas
that that is essenƟal in creaƟvework.Whenever one aban-
dons a musical impulse because it would be too difficult to
adapt the simple prototype to it, a creaƟve choice has been
lost. If musician-programmers have extensible design tem-
plates inmind, ready to apply at amoment’s noƟce, the dis-
tance between inspiraƟon and implementaƟon decreases
andmore interesƟngmusical behaviors comewithin reach.
Instrumentalists pracƟce scales so that they can think in
terms of groups of notes while sight-reading or improvis-
ing. Similarly, computer musicians can “pracƟce” decou-
pling and come to think in terms of constellaƟons of loosely
coupled objects. Ideally, computer musicians would be-
come so comfortable with beƩer programming pracƟces
that they reach for extensible code structures as a maƩer
of habit, rather than effort, expanding the available range
of musical possibiliƟes.
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에이치 제임스 하킨즈 

본 연구는 필자의 컴퓨터 음악 작품 《꾸밈/몸통Affectations/Torso》에 사용된 프로그래밍 기법에 대한 것으로, 대규모 

형태를 향후 수정이 용이하게 하기 위해 조직화하는 기술로써 원곡의 인터페이스를 무접촉-동작감지 인터페이스로 

완전히 대체하는 것을 포함한다. 본 연구에서는 상호작용 컴퓨터 음악에서 대규모 구조에 대한 접근 방식에 대해 

밝히고, 인터페이스 교체를 복잡하게 만드는 코드 설계 에러, 특히 구성 요소들 간의 밀착 결합에 대해 논의한다. 

이 연구의 주제는 상호작용 소리 예술을 위한 프로그래밍 환경에서 매우 일반적으로 다루어지는 주제인데,

객체지향 프로그램 언어인 슈퍼콜라이더SuperCollider를 사용하여 그 예를 들고 있으며, 퓨어데이터Pure  Data를 통한

마지막 예시에서는 그래픽 패칭patching 환경에서 동일한 원리들이 적용될 수 있다는 가능성을 보여 주고 있다.
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