Affectations/Torso:
A case study in future-proofing interactive computer music through robust code design

H. James Harkins
Modern Music Department, Xinghai Conservatory of Music, China
jamshark70 [at] dewdrop-world.net
http://www.dewdrop-world.net

This paper describes programming techniques used in my composition Affectations/Torso to organize large-scale form to facilitate future revision, in-
cluding the complete replacement of its original performance interface with a gesture-driven, touchless interface. This article covers my approach to
large-scale structure in interactive computer music before discussing code design errors, specifically tight coupling between components, that com-
plicate interface changes. The issues are general to any programming environment for interactive sound art; examples are in the object-oriented
programming language SuperCollider, and a final example in Pure Data shows how the same principles may apply in graphical patching environments.

Many interactive computer musicians use programming
environments for music, such as SuperCollider, Chuck,
Max/MSP and Pure Data. Some have prior programming
experience, but it is more common to learn “on the
job,” picking up enough programming tricks to create
interesting performances, but not necessarily enough to
evaluate programming strategies and choose designs that
are better able to absorb new demands in the future.
Software design is not always necessary for a successful
musical work; the larger the project, however, the more it
benefits from “big-picture” code organization.

In my composition Affectations, | had created one of these
forward-looking designs to handle one of the project’s
central requirements. Later, when | wanted to revise one
movement into a solo work, it turned out that this design
solved a number of problems essentially “for free.” The de-
sign was so successful that | have already used it in subse-
qguent work.

Affectations (2010-2011) is a 45-minute modern dance
piece, with choreography by Laura Schandelmeier and
Stephen Clapp of Dance Box Theater in Maryland, USA,*
live visuals and motion detection by Lorne Covington,?
and music by myself, written using SuperCollider Server
software (McCartney 2002). Torso is the fourth of five
movements. In 2013, | extracted this movement for
separate performance and added a layer to control the
performance by movement in front of the computer’s
webcam.

The original conception of Affectations used infrared cam-
eras to track the dancers’ movements and control the mu-
sic’s flow. The video-control plan was not fully realized; still,
the musical code needed to be able to handle two control
sources:

e Graphic User Interface (GUI) objects in
SuperCollider itself, for testing;

000 - 00000000 000 0110 (2013)

e Open Sound Control messages from the video
software, running in vwwy.?

To meet this requirement, | designed the original code to
separate the musical sequence from the user-interface
mechanisms. It is this separation that made it easy to add
a new control mechanism after the fact.

This article describes this separated object design and il-
lustrates how object-oriented design principles address
problems that musician-programmers will face in larger
projects sooner or later. It is not a programming tutorial;
rather, it aims to expose musicians to some higher-level
“programmers’ secrets” that help to organize projects
that are easier to maintain going forward, and even open
up creative possibilities in the short term.

I will begin with some brief notes on object-oriented pro-
gramming and on structuring interactive computer music
in terms of multiple structural layers, and apply object-
oriented design principles to the problem of incorporating
user control into higher levels of musical structure. | will
briefly cover the design of the video control components,
and conclude with an example in Pure Data to demonstrate
how similar design principles can work in graphical patch-
ing environments.

The complete code for Affectations/Torso is available
for download from https://github.com/jamshark70/
affectations-torso.*

Object-Oriented Programming concepts

SuperCollider is an object-oriented programming (OOP)
language, and object-oriented design informs my
solutions for large-scale form and external control. | do
not assume readers will be deeply familiar with OOP, so |
introduce the primary concepts here, as summarized in
Table 1.

37

H. James Harkins — Affectations/Torso: A case study in future—proofing interactive computer music through robust code design

Term Purpose

Class Defines an object’s data structure and interface.

Instance Uses the class definition to store real data and do real work.

Interface The list of an object’s methods. In pure OOP, the public interface is the only way to use an object.

Method Represents an action the object can perform. It takes arguments (input data) and returns a result.

Polymorphism | Allows the same method name to take different, sensible actions in different objects.

Inheritance Allows a new class to be based on an existing one. The new class inherits data structure and
methods from its superclass.

Design pattern | A way of structuring classes into replaceable, decoupled components that encourages code reuse
and later extensibility.

Table 1. Key Object-Oriented Programming terms.

Phone Direct connections needed | Unique connections | Hub connections needed
A A<—BA+—CA+—D 3 A <— Hub
B A+<—BB+—CB<«+—D 2 B +— Hub
C A<—CB+—CC«+—D 1 C<+— Hub
D A+—D,B+<—D,C«+—D 0 D +— Hub

Total i3 —¢ 4

2

Table 2. Connections required in a 4-telephone network, comparing direct connections against a hub. “Unique connections” does not count duplicates.

A <— Bis counted in the A line, but not the B line.

OOP’s principal innovation is to bundle a data structure and
actions that can be performed on the data structure into a
single package called an object. Every object belongs to a
class; a class defines the variables representing the data
structure and the methods that declare the actions. A new
class can build on an existing class through inheritance, in
which the new class has access to the entire data structure
of its parent class, as well as the parent’s set of methods
(which it can use unchanged, or overwrite with a new def-
inition specific to the new class).

This set of methods is called the object’s interface, reflect-
ing the object-oriented paradigm shift: focusing on what
an object can do rather than what kind of object it is. This
shift of focus allows one object to masquerade as another,
by polymorphism. Two classes may have very different data
structures, but implement some method names in ways
that are compatible with each other. In SuperCollider, for
instance, GUI objects change the displayed data using the
value_ method, but the visible impact is very different for
buttons, number boxes, sliders, pop-up menus and so on.

Polymorphism makes it possible to build complex systems
out of simpler, reusable components. Two objects with a
common interface can do different work in response to
the same orders, “plugging into” the same part of a larger
system. For instance, in Affectations/Torso, each section
needs to react differently to video data coming from the
laptop’s webcam. A straightforward implementation uses
a different video-response object for every section. Each
of these objects receives video data and triggers events
in the same ways. Only the logic between input and out-
put is different; that is, the objects communicate identi-

cally but do different work. Because of the identical com-
munication, the first section can plug its video responder
into the system and the program responds to one set of
gestures. When that section ends, it unplugs the video re-
sponder; then the second section plugs in a different one,
and the program now reacts to a different set of gestures.

Object design: Tight vs. loose coupling

Object design is the practice of deciding which objects han-
dle which requirements and standardizing the interfaces
by which these objects should cooperate. Object-oriented
design draws an important distinction between tight and
loose coupling.

Object coupling is an abstract concept; an analogy may
clarify. One way to connect telephones in a wired network
is to install physical lines between every pair of phones.
This is tight coupling. It seems like the easiest way to go—
what could be simpler than direct connections? However,
it does not scale easily to larger networks. A network of
only four telephones requires six direct connections (Table
2). For any number of telephones n, the number of connec-
tions is the sum of integers 1 to(n :) 1 ZZ;; k. This may
n— .

be calculated more simply as HT a quadratic calcula-

tion. Quadratic systems are especially inefficient. In a lin-
ear system, the cost of adding new components is roughly
the same, no matter how many components there were to
begin with. Quadratic growth means that the cost of one
new component grows with the size of the system. Adding
one telephone to a four-telephone network requires four
new connections; adding one to a hundred-telephone net-
work would need a hundred new connections, in addition

38 Emille, the Journal of Korean Electro—Acoustic Music Society Vol. 11 (2013)

oo ooo o000 - Ooo/b0:00 000000000 OO0 O0oUO00 00D OO0 OO0 ODDO

to the 12999 — 4 950 connections that already existed.
Tight coupling in software, similarly, is a trivially simple de-
sign concept which becomes unmanageable in practice as
the system grows.

The actual structure of telephone networks, with groups of
endpoints feeding into hubs, reduces the number of con-
nections dramatically. If four telephones connect to one
hub, then you need only four connections. 100 phones
need 100 connections (a considerable savings over the
nearly 5000 direct connections that would be needed), and
adding one new unit adds only one connection, whether
the system is small or large. This is loose coupling, in which
communication goes through an intermediary. The inter-
mediary adds a small amount of complexity to the design
structure—for the smallest networks, the structural over-
head may not be worth it—but as the network grows, the
structure vastly simplifies the shape of the network and
makes the whole much easier to maintain.

In software, the nature of the communication between ob-
jects is at least as important as the number of connections.
Two forms of tight coupling are direct references to objects
and communicating specific actions to other objects.

Direct references to objects. Problem: The more direct ref-
erences, the harder it is to keep them consistent with each
other, especially if those connections are scattered among
a large number of objects.

Solution: Keep references in hubs. With fewer places to
handle references, the chance of mistakes is reduced. The
triggering strategy in this paper uses exactly such a hub.

Communicating specific actions to other objects. Prob-
lem: It is not always possible to predict the specific re-
sponses required for one object’s change of state. Cod-
ing toward specific actions locks the program into those
specifics. Even very simple future requirements would re-
quire changes in the communication protocol.

Solution: Communicate what happened rather than what
to do. If a synthesis parameter should be reflected in a
graphical user interface (GUI), it should communicate only
that its value changed. The GUI object would receive the
notification and take its own appropriate action. Other ob-
jects are free to respond to in a different, equally appropri-
ate, ways.

Decoupling is so important to the design of large programs
that entire books are devoted to design patterns: object
structures that promote reusability. The most notable of
these, still influental after nearly twenty years, is Design
Patterns: Elements of Reusable Object-Oriented Software
(Gamma et al. 1995). The techniques presented here rely
on two design patterns, related to the two forms of tight
coupling listed above.

000 - 00000000 000 0110 (2013)

e A Mediator is a hub that connects any number
of senders and receivers, without the senders
having to be aware of the receivers and vice
versa.

e An Observer registers with another object
(called the “model” or “subject”) to receive
updates. The model broadcasts notifications to
all registered observers. The messages to be
broadcast are abstract, rather than specific
commands.

The concrete benefits of these patterns will become appar-
ent through the discussion of the implementation details
of Affectations/Torso. This discussion focuses on triggering
events, but the techniques apply generally to any commu-
nication between discrete components. For example, syn-
chronizing parameter values with graphical displays and
external control devices benefits from the Model-View-
Controller architecture (Krasner / Pope 1988). A com-
plete discussion of MVC is beyond this article’s scope, but
here is a brief summary:

e The Model represents the parameter’s value.
When it changes, it broadcasts a notification.

e The View is any reflection of that value that is
perceptible to the user: a slider or knob on
screen, audio synthesis, or display on an external
device.

e The Controller is the Mediator that connects the
Model to its physical View. It registers as an
Observer of the Model, and manipulates the
View in response to “changed” notifications. If
the View is an interface object that the user can
touch, the Controller sends the new information
to the Model, whose notification pushes the
new value to every other Controller.

It is slightly more complex initially to implement MVC
rather than direct connections for parameter control,
though it becomes easier with practice. It is worth the
effort, however, as MVC makes it trivially easy to add new
interface components. The Model is the hub previously
mentioned. Other objects connect only to the hub, sim-
plifying the channels of communication and reducing the
likelihood of bugs.

Control over large-scale form

Musical compositions operate at multiple structural lev-
els simultaneously; when the composition is expressed in
code, it makes sense to organize these levels into distinct
objects. Table 3 summarizes the levels at which | tend to
work, beginning with the most detailed levels and proceed-
ing to higher levels of organization.

For sonic events, | favor SuperCollider’s built-in event and

39

H. James Harkins — Affectations/Torso: A case study in future—proofing interactive computer music through robust code design

Level Responsible objects | Typical duration
Sonic events Event 60ms - seconds
Gestures Process; Pattern Seconds

Sections Section Seconds, minutes

Whole composition

Table 3. Hierarchical levels in my SuperCollider composition framework.

Section sequencer

Minutes, hours

40 beats

A J

A

rumble

15 beats

ﬁ—»

whine

Figure 1. Graphical view of two overlapping processes.

TLSequencelterator ([

bpCmd: (name: \rumble, dur: 40),
15,
bpCmd: (name: \whine, dur: 20)

s

Listing 1. Simple sequencer, implementing the musical flow from Figure 1.

pattern framework (Kuivila 2011).> An Event object pro-
duces one sonic event, typically a note; Pattern objects
generate sequences of Events. A pattern almost always
depends on other resources: a unique audio bus for mix-
ing at minimum, but possibly also including effect proces-
sors, buffers containing sampled audio or wavetables and
the like. A musical process combines a pattern with all its
resources into a single package (Harkins 2011). Playing a
process produces one or more musical gestures; processes
may naturally overlap to build complex textures. These ob-
jects represent the detail layers of musical structure.

In my solo performances, | manage higher levels of struc-
ture by controlling the behavior of process objects, by issu-
ing text commands to the objects while onstage or using a
MIDI controller. | could not be present for all performances
of Affectations; thus, the software had to be able to do au-
tomatically what | would do by hand if | were onstage. For
this purpose, | developed a timeline sequencer, published
as an extension package called “ddwTimeline,”® which per-
forms lists of command objects.”

For example, in a live performance, | might start a low
rumbling sound, and add a high-pitched whine some sec-
onds later (Figure 1). The sequencer expresses this simple
case in a way that reflects the temporal layout, as shown
in Listing 1. The first line inside the TLSequencelterator
is a bpCmd, or “Bound-process command,” which plays
the rumble process and stops it after 40 beats. After 15
beats, another bpCmd plays the whine for 20 beats. The

commands are written sequentially but may overlap. The
timing between them can be controlled by specific dura-
tions as here, calculated durations (which may introduce
randomness), or by responding to some commands’ state
changes. The last of these supports user-trigger control, to
be covered in the next section.

Above this, a section object can generate and play one
or more sequences, and a list of sections constitutes the
piece. If the sections are carefully written and correspond
to rehearsal marks in a score, performers can start the
electronics at any mark, facilitating rehearsal. Also, | find
that the separation between processes, sequences and
sections helps with the creative process. While working
on higher-level form, | can focus on higher-level code that
omits the details of musical gestures: a “zoomed-out”
view. If a gesture needs some adjustment, | can drop down
to the process level to zoom in on the details without being
distracted by higher-level concerns.

Large-scale timing by triggers

In Affectations and other of my works, the durations of sec-
tions, and cues within sections, may vary according to the
performers’ actions. That is, the sequencer must run some
processes and then wait for input before proceeding to
the next command. The ddwTimeline framework uses sync

40 Emille, the Journal of Korean Electro—Acoustic Music Society Vol. 11 (2013)

oo ooo o000 - Ooo/b0:00 000000000 OO0 O0oUO00 00D OO0 OO0 ODDO

TLSequencelterator ([

synthCmd: (name: \default, freq: 60.midicps, dur: 0.8),

\cmdSync,

synthCmd: (name: \default, freq: 64.midicps, dur: 0.8),
1) .play;

Listing 2. Simple sync-keyword example in ddwTimeline.

Rect.aboutPoint (Window.screenBounds.center, 50,

35);

(
~trigParms = (
id: \button,
setDoneSignal: {
~doneSignal = true; // tells funcCmd to wait
(inEnvir {
var center =
~button = Button(nil, center)
.states_([["GO0"]11)
.action_(inEnvir { ~stop.() })
.front;
}).defer;
3,
clearDoneSignal: {
(inEnvir { ~button.close }).defer;
3
);

t = TLSequencelterator ([

60.midicps),

// stop previous note

64.midicps),

dur: 0.8),

synthCmd: (name: \default, id: \c, freq:
funcCmd: ~trigParms,
\cmdSync,
funcCmd: (func: { ~iterator.findActive(\c).stop }),
synthCmd: (name: \default, id: \e, freq:
funcCmd: ~trigParms,
\cmdSync,
funcCmd: (func: { ~iterator.findActive(\e).stop }),
synthCmd: (name: \default, freq: 67.midicps,
1) .play;

)

Listing 3. External trigger by a GUI button.

keywords for this. Sync keywords themselves do not incor-
porate any user action to resume the sequence. They sim-
ply pause the sequence until one or more previous com-
mands finish:

e \sync: Pause the command sequence until all
prior commands come to an end (note that it is
the sequence of commands which pauses, while
the commands themselves continue to operate);

e \cmdSync: Pause the sequence until the
immediately prior command comes to an end,
ignoring the status of other previous commands.

What does it mean to say that a command has come
to an end? Figure 1 shows that commands occupy time:
they begin, remain active for some time, and then stop.
When a command stops, it communicates that fact back to

000 - 00000000 000 0110 (2013)

the sequencer. The “stopped” notification from the com-
mand may clear the condition for which the sync keyword
was waiting, allowing the sequence to continue. Listing 2
demonstrates. A synthCmd plays a single synthesis node
on the server. The \cmdSync keyword takes effect imme-
diately after the synthCmd starts, pausing the sequencer.
The parameter dur: 0.8 tells the command to stop it-
self after 0.8 beats. At that moment, cmdSync’s condition
has been satisfied and the sequencer continues to the next
synthCmd.

User-input triggers

Any command object can expose a user trigger by creat-
ing one or more objects that respond to user input. At

41

H. James Harkins — Affectations/Torso: A case study in future—proofing interactive computer music through robust code design

GUI MIDI Video
objects responders control
Sequencer v \¥

trigCmd trigCmd

a. Embedded approach: Every trigCmd is
responsible for all responders. Changes
must be repeated for every trigCmd.

Figure 2. Schematic comparison of embedded vs. decoupled approaches.

a command’s onset, a hook (setDoneSignal) allows the
command to create additional resources; at the end, an-
other hook (clearDoneSignal) releases them. The com-
mand should also set a variable, ~doneSignal, so that the
command will stay active until the user trigger arrives, or it
runs out of work to do. An example may be found in Listing
3. This example installs a clickable Button as the user-input
responder.2. When clicked, the button runs an action
function; here, the action stops the funcCmd: ~stop. ().
Once the funcCmd is finished cleaning up, cmdSync is free
to allow the sequence to continue and play the second
note.

In a composition, the commands between user triggers
would be far more complex, controlling process objects in-
stead of single notes. Also, the command may use any kind
of object that responds to external information (typically
MIDI or OSC receivers). The triggering principle remains
the same in all cases.

Embedded triggers: Problem

The above design embeds the user interface objects into
the trigger commands. Each trigger command must create
and destroy all the user interface objects it needs. Figure
2a illustrates the tight coupling this structure implies. The
riskiest element is that every user interface object must
know the specific trigger command to stop. If this infor-
mation is faulty, or an interface object was not removed
properly (pointing to a stale command), unpredictable be-
havior ensues.

GUI MIDI Video
objects responders control
Mediator Free-standing;
creates GUIs one-way comm.
Mediator

Register;

receive triggers f\

Ny

trigCmd

Sequencer ‘

trigCmd

b. Decoupled approach: TrigCmds
connect to one object, no matter how
many responders there are.

Listing 3 inadvertently makes it difficult to fire the trig-
ger by any means other than the GUI button. The GUI
button stops the enclosing funcCmd; if we can stop the
same command in code, then any trigger source could do
the same. The funcCmd is marked with an ID \button,
and the sequencer can locate command objects by ID:
t.findActive(\button).stop.

This approach is neither convenient nor elegant. It is odd
to make the sequence go forward by telling something to
stop. Surely it would be more logical to tell some object
to do a trigger instead. In fact, this is a common problem
in object-oriented programming: a programming interface
(the set of methods required to accomplish a task) is de-
signed for one job, but later pressed into service for a dif-
ferent job. The old programming interface is often inappro-
priate for the new task.

Solution: The Mediator design pattern

The typical object-oriented solution is to create a new class
of object whose interface is designed specifically for the
task at hand. For this situation, the new object should:

* Provide a central location toward which
user-interface objects can direct triggers;

e Forward triggers to any number of objects that
are expecting a trigger.

The Mediator design pattern stands between related ob-
jects, providing a standardized channel of communication

42 Emille, the Journal of Korean Electro—Acoustic Music Society Vol. 11 (2013)

oo ooo o000 - Ooo/Ub0:00 00 0LbDOD L0000 OO0 O0O0O0O0O0D ODDOO0OO0DODDO

(
Proto {
~prep = {
~registered = IdentitySet.new;
~makeResponder.();
Environment.current
3
~freeCleanup = { ~clearResponder.() };
~makeResponder = {
(inEnvir {
~button = Button(nil, Rect(Window.screenBounds.right - 100, 0,
.states_([["GO0"11)
.enabled_(false)
.action_(inEnvir { ~doTrigger.() })
.front;
}).defer;
};
~clearResponder = {
(inEnvir { ~button.close }).defer;
3
~addClient = { |client]|
if(~registered.includes(client)) {
"BP(%): Tried to re-register a previously-registered object”
.format(~collIndex.asCompileString).warn;
A
~registered.add(client);
~addClientHook. ();
3
}
~addClientHook = {
(inEnvir { ~button.enabled = ~registered.isEmpty.not }).defer;
¥
~removeClient = { |client]
if(~registered.includes(client)) {
~registered.remove(client);
~removeClientHook. ();
3
3
~removeClientHook = { ~addClientHook.() };
~doTrigger = { |trigld]|
~registered.do { |client]
client.doTrigger(trigld);
3
3
} => PR(\trigMediator);
)

Listing 4. A simple trigger mediator.

000 - 00000000 000 0110 (2013)

100,

70))

43

H. James Harkins — Affectations/Torso: A case study in future—proofing interactive computer music through robust code design

(

PR(\funcCmd).clone {
~doneSignal = true;
~mediator = \trigMediator;
~setDoneSignal = {

BP (~mediator).addClient(currentEnvironment);

3

~clearDoneSignal = {

BP (~mediator).removeClient(currentEnvironment);

3
~doTrigger = { ~stop.() };
} => PR(\trigCmd);

Listing 5. A timeline-command to wait for a signal from the mediator.

(

// Create the mediator and MIDI controller once.

BP(\trigMediator).free; PR(\trigMediator)

~pedalCtl. free;

~pedalCtl = MIDIFunc.cc(inEnvir { |val]
if(val > @) { BP(\trigMediator).doTrigger;

3, 64);

)

(

TLSequencelterator ([
{ "one".postln; 0 3},
\trigCmd,
\cmdSync,
{ "two".postln; 0 3},
\trigCmd,
\cmdSync,
{ "three".postln; 0 1},
\trigCmd,
\cmdSync,
{ "stop".postln; @ }
I .play;
)

Listing 6. Using the mediator in a sequence, with additional MIDI control.

so that the objects on either side can come and go inde-
pendently. Figure 2b illustrates the Mediator design pat-
tern applied to to this situation.

Listing 4° defines a simple mediator for triggers. It ad-
dresses all the problems of embedded triggers noted
above. Stale user interface objects are not a problem;
in the example, the mediator creates one button that is
reused for all triggers. The button does not have to know
which commands are waiting for triggers. It simply calls
the mediator’s central triggering location: doTrigger.

As in Listing 3, a specific command object must appear in
the sequence wherever the flow should pause for a trig-
ger. A suitable command definition is found in Listing 5,°

=> BP(\trigMediator);

3

and its usage is demonstrated in Listing 6. The mediator
will call doTrigger onit, so the command must implement
this method name in a way that is appropriate, namely
~stop. (). The command must also tell the mediator that
itis interested in triggers, by registering with the trigger ob-
ject, using addClient and unregistering itself after receiv-
ing the trigger, by removeClient. Where setDoneSignal
and removeDoneSignal respectively created and removed
a Button in Listing 3, now they should simply connect to
the mediator.

Returning to the issue at the heart of this article: Does this
structure simplify the addition of a new control mecha-
nism? Indeed, it does: in Listing 6, it requires a mere four

44 Emille, the Journal of Korean Electro—Acoustic Music Society Vol. 11 (2013)

oo ooo o000 - Ooo/b0:00 000000000 OO0 O0oUO00 00D OO0 OO0 ODDO

lines of code to add a MIDI foot switch controller (see
pedalCtl). Like the button, the pedal control needs only to
call doTrigger on the mediator when the pedal is pressed
(val > @ tests whether the pedal has been pressed or re-
leased). Both the button and the foot switch go through
doTrigger; thus the response to the pedal is exactly the
same as clicking the button with the mouse. There is no
need to modify the sequence or the definitions of the me-
diator or trigger command; the sequence will run equally
well with or without MIDI.

This design is why it was easy to add video control to Affec-
tations/Torso. The video control logic was not simple, but
connecting it to the trigger mediator was precisely as easy
as in Listing 6’s MIDIFunc. This eliminated a whole class of
code-integration problems and allowed me to focus on the
video-analysis problems.

Video control implementation

Space does not permit a complete description of the
video-control system in Affectations/Torso. | will present
an overview, however.

Flow of data

Figure 3 illustrates the data flow graphically. SuperCollider
does not feature built-in video input, so | used GEM (Graph-
ics Environment for Multimedia) objects in Pure Data to
process webcam images. The Pure Data patch uses a sim-
ple frame-difference technique to identify areas of the
frame that are in motion.!! The patch then divides each
image into a 3x3 matrix of sub-frames, and sends an OSC
message to SuperCollider for each sub-frame, containing
the centroid coordinates!? and a relative measure of the
amount of movement. One additional message gives the
same statistics for the entire frame. The performance dis-
play is shown in Figure 4.

In SuperCollider, aVideoListener object receives the OSC
messages and, in another use of the Observer design pat-
tern, notifies any registered clients that a new set of analy-
sis data are ready. In Affectations/Torso, the clients watch
for specific triggering conditions and call into the trigger
mediator to fire. As already shown, this clears any active
sync keywords, allowing the sequence to advance.

Video trigger objects

The performance would be boring to watch if every video
trigger followed the same gesture; so, each section needed
its own unique analysis functions. Recall that objects are
interchangeable if they have compatible interfaces; so,
each section’s video logic should be wrapped into objects
with consistently named methods. In Listing 7, prRespond

000 - 00000000 000 0110 (2013)

is the main hook; when the VideoListener broadcasts
that a new frame’s worth of data are ready, the video
analyzer object calls prRespond, which then delegates to
other functions (e.g. nextSegCheck and respond) to do
the work. Replacing these lower-level functions with other
logic will change the behavior of the video response, with-
out changing the standard entry point.

It is simple, then, to have different analysis behaviors in
each section by removing one analyzer object and adding
another. In my compositional framework, a section object
can create and remove any resources it needs at transi-
tion points. Listing 8 shows where the video analysis ob-
jects come and go: the first item in the sequence creates
the analyzer; the onStop function, executed when the sec-
tion ends, removes it. Thus, only one analyzer exists at any
time, and the analysis logic can change without affecting
any other components.

The analyzers use a variety of techniques to fire triggers:
watching for the centroid to move to a specific part of
the frame, comparing the amount of movement against a
threshold, or even, in the final section, tracking the cen-
troid to see when it moves from the right side of the frame
to exit past the left edge.

Video data always have some jitter above and below a gen-
eral trajectory. Tests for triggers should therefore cover
several data points: one data point meeting a condition
may be an aberration, while five or six consecutive matches
are unlikely to be accidental. For example, some of Torso’s
sections begin when one hand moves toward the top of
the frame. If everything else is more-or-less still, the cen-
troid will follow the moving hand, causing its y coordinate
to decrease (centroid coordinates are normalized: —1 <
y < 1). The top third of the frame is y < —0.33; how-
ever, y may jump into that range briefly even though the
“true” centroid is closer to the frame’s center. The analyzer
should ignore such brief glitches. So, it specifies a number
of consecutive “hits” (segReqd); when the y condition is
met, the analyzer counts down from this number and only
fires when it reaches 0. If the condition fails, the counter
resets and there is no trigger.’?

This type of logic figured into so many sections that | di-
vided the test among several functions, allowing me to
override parts of the test while reusing the overall logical
form (Listing 7): nextSegCheck and resetSegCheck han-
dle the counting, and nextSegCondition is the specific
test based on the video data. In addition to checking the
y coordinate, the normmag test in nextSegCondition en-
sures that there is enough movement in the frame to be
meaningful. (Without enough frame movement, the cen-
troid position is based on video noise rather than a solid
reading, and is thereby unpredictable.) To match a dif-
ferent gesture, | need only to replace nextSegCondition
with a different one, e.g. ~model.centroid.y > .33

45

H. James Harkins — Affectations/Torso: A case study in future—proofing interactive computer music through robust code design

SuperCollider [.
Video data analyzers ' Registered !
(one at a time) . trigger
n]
pemmmmmmey ' /v command !
bure Dat . w7 Analyzer F.__ TH R et -
ure Data . . B S T . k. rigger | ;---------- .
— | Videolistener X, R . : SO i '
webcam patch RS el > mediator ~\: Registered :
» Analyzer ; i trigger
......... -]]
' command !
Figure 3. Flow of data in Torso’s video control. Dashed boxes indicate temporary objects.
1
* — 0
L 4
[|
e
. |
/
running nr| || [l 18

Figure 4. Display of video performance interface. To the left is the GEM window in Pure Data, showing the frame difference, where lighter pixels indicate
more movement. At right is a representation of the video data received in SuperCollider. | am standing still and moving my hand in the middle of the
frame. The gray rectangle, just above center in the right window, shows the centroid (center of movement).

46 Emille, the Journal of Korean Electro—Acoustic Music Society Vol. 11 (2013)

oo ooo o000 - Ooo/b0:00 000000000 OO0 O0oUO00 00D OO0 OO0 ODDO

Proto ({
// ... initialization methods omitted

~segReqd = 6;
~segTrigCount = 0;

~segRange = [0.008, 0.25]7;
~nextSectionThresh = -0.33;
~segTrigCount = ~waitBeforeAdvance;

// reqd for transition to next section

// called when a new analysis frame is ready

~prRespond = { |obj, what, moreArgs|

switch(~nextSegCheck.())

{ \goAhead } {
BP (\segTrig).doTrigger;

3

{ \respond } {
~resetSegCheck. ();
~respond.valueArray(obj, what,

3

{ \notYet } {
~respond.valueArray(obj, what,
3

3

// If condition is true, count down;
// If a test fails, count will reset.
~nextSegCheck = { |obj, what, moreArgs|
if (~nextSegCondition.()) {
~segTrigCount = ~segTrigCount - 1;
if(~segTrigCount
A
\respond
3
1

// perform the test:
// Got a trigger:

// Trigger failed;

// Trigger xmight* complete,
moreArgs);

3 outcomes
fire!

reset the test

moreArgs);

so don't reset

trigger when it reaches 0.

== @) { \goAhead } { \notYet }

// You can override this to use a different test.

~nextSegCondition = {

~model.normmag.inclusivelyBetween (*~segRange)

and:

3

{ ~model.centroid.y < ~nextSectionThresh }

~resetSegCheck = { ~segTrigCount = ~segReqd };

}) => PR(\abstractVizTrig);

Listing 7. A trigger based on a threshold, using a counter to eliminate false positives.

to catch the centroid moving into the bottom third of the
frame.

Continuous parameter control

In some sections of the piece, video data also control com-
positional or synthesis parameters, such as the relative
speed of notes or a frequency modulation index. In Listing
7, prRespond calls an optional function labeled respond,
which handles any arbitrary reaction to the video data, in-
cluding parameter mapping. This function is called when-
ever video data come in but the section trigger should not

000 - 00000000 000 0110 (2013)

fire. (If the trigger fires, then this analyzer object will be re-
moved and any mapping within respond would be invalid;
there is no need to call it in that case.)

Mapping video data to a parameter may be as simple
as converting the incoming data from one range to an-
other and setting the parameter. SuperCollider has a num-
ber of methods for range mapping: 1inlin to map a lin-
ear range onto another linear range, 1inexp for linear-to-
exponential, and so on. Recall that the centroid coordi-
nates range from -1 to 1; 1inexp can easily convert this to,
e.g., afilter cutoff, asin ~model.centroid.y.linexp(-1,
1, 16000, 100).-1is the top of the video frame and cor-

47

H. James Harkins — Affectations/Torso: A case study in future—proofing interactive computer music through robust code design

PR(\tlSection).copy.putAll((
name: "T2030",
// ... initialization and cleanup
seqPattern: {
Pn ((
sequence: [

{

// create this section’'s video analyzer:

if(topEnvironment[\useVideol) {
=> BP(\t2030trig);

Fact(\t2030trig)
};

// ... reset processes to this section's state

3,

// ... commands for this section
1,
// 'onStop'
// removing the video analyzer
onStop: { BP(\t2030trig).free 3},
// ... additional sync information

), 1
)

occurs when the section stops,

Listing 8. Outline of a section object, showing where video analyzer objects are created.

responds to the higher cutoff frequency of 16000 Hz. Then
the respond function can set any type of control based on
the new value. Because the respond function can hold any
logic, mapping may be far more complex than this

Trigger dispatch in Pure Data

Graphical-patching environments, such as Max/MSP by
Cycling ‘74 and the open-source project Pure Data, are
widely used for interactive audio art. Their design, fea-
turing graphical object boxes connected by virtual “patch
cables” connecting outputs from one object to inputs of
another, is radically different from that of object-oriented
code; still, the principle of decoupling to support future re-
vision holds true. The remainder of the article describes
a patch in Pure Data that decouples user interface objects
from musical flow. The patch translates easily to Max/MSP.

Three main concerns guided the design of the dispatcher
in Pure Data:

e Reusability: It should be possible to use the
trigger-dispatch mechanism in many
compositions, with only minimal adjustments.

e Scalability: It should be able to handle 5 or 50
triggers, without cluttering the screen with too
many patch cables.

e Unified programming interface: Just as Listing 4
allows triggers to be directed to a single point,
doTrigger, the Pure Data mechanism should
provide a single trigger location, addressable
from anywhere in the patch.

For reuse, the triggering logic is encapsulated into an ab-
straction (graphical-patcher terminology for a patch saved
on disk that may be embedded in another patch). The en-
tire abstraction, shown in Figure 5, is analogous to the me-
diator in the SuperCollider examples. It presents a small
interface with three control buttons and a display of the
current section’s name, using Pure Data’s “Graph On Par-
ent” feature.'® It cannot assume that every composition
will contain the same sections, so it provides an [inlet]
at the top to receive a list of section names. A composi-
tion may send the list of sections to the inlet while loading
the patch by triggering a message box using [1loadbang],
as shown in Figure 6b. This also supports scalability, as the
section list may be arbitrarily long.

Both the decoupling and the single location for triggers
come from [send] and [receive] pairs. Normally, mes-
sages travel along visible “patch cables,” while [send] and
[receive] transmit messages “wirelessly”; [send] broad-
casts a message to a specific name, and all [receive] ob-
jects with the same name get that message. This mecha-
nism is inherently more loosely coupled than patch cables,
because a new sender or receiver may be added anywhere

48 Emille, the Journal of Korean Electro—Acoustic Music Society Vol. 11 (2013)

oo ooo o000 - Ooo/Ub0:00 00 0LbDOD L0000 OO0 O0O0O0O0O0D ODDOO0OO0DODDO

inlet

L

repend set

r sectctl reset one two three four fivel 1list of section names

s sectctl_list

s sectctl_current loadbang r sectctl_idle
r sectetl_next s sectctl_idle

set idle
r sectctl_list L

i

taa
llst dr'J.ps'Low r sectctl_stop

taahb

I s sectctl_display

at end, stop current and set "idle" s sectctl_current

E————ﬂw

] sectct'l. _current

s sectctl_idle

r sectctl_display

. [[T F
s sectctl_current 1 last-playing section: stop \

fr‘epend set |2 update current-section variable ﬂEXt stop r'ESEt

d'L
ﬁ aa r sectctl_current ddle
s sei@dis;ﬂay

| fﬂ =

thbha thaasa
i I - L

o stop s sectctl_display
é‘x-_—. T

=1 =1

2 next-playing section: go

Figure 5. Dispatcher abstraction implemented in Pure Data.

r one Lloadbang

route io stop, one two three four fivel list of section names

L gl 2 '.—‘ ™ d sect_one pd sect_two .
osc~ 61 _ :Iext stop reset [I

1ine~ Adle

/ f 127
f... d video_control e @1
outlet~ s sectctl_next
dac~

a. Subpatch: Play one note. b. Main patch: Complexity is hidden in the triggering

abstraction (left) and subpatches.

Figure 6. Simple examples using the dispatcher abstraction.

000 - 00000000 000 0110 (2013)

H. James Harkins — Affectations/Torso: A case study in future—proofing interactive computer music through robust code design

in the patch (even in different abstractions or subpatches)
with no need for an explicit connection.

The central triggering location is a receiver: [receive
sectctl_next]. The “next” button sends a bang to
this receiver, and any other control mechanism can do
likewise. A simple way to add video control would be to
add a subpatch, such as [pd video_control] in Figure
6b, which contains the video analysis logic and outputs a
bang to feed to the sectctl_next receiver. Another type
of control could be implemented in the same way, without
modifying the triggering abstraction or any musical logic.

The triggering mechanism must also communicate with
the piece’s sections. The strategy from SuperCollider, in
which triggering commands register with the mediator,
does not apply in Pure Data because all [receive] ob-
jects are active all the time; there is no way to unregister
them. Instead, a seldom-used feature of [send] allows it
to change its name to a symbol received in its right-hand
input.'®> Thereby, one [send] object can, at one time, di-
rect messages toward a section called “one,” and later to-
ward a different section called “two.” The list of section
names should feed this right-hand input, one section at a
time. Normally an entire list travels in a single message. A
[list-dripslow] object parcels out the list items one by
one, and receives its bang from the central triggering loca-
tion.t®

This example defines a minimal protocol, sending a go mes-
sage to a section name when the section starts and stop
when it should end. (The stop message is not optional. Re-
hearsals will often stop the piece in the middle, calling for
a message distinct from “go to the next section.”) The logic
underneath [1ist-dripslow] ensures that the currently-
playing section gets its stop message at the same time the
next section receives go. If a composition requires a dif-
ferent messaging protocol, it may be implemented here.
Sections may be created as subpatches, using [route go
stop] to start or stop the section, as in the very simple
example in Figure 6a. The section subpatches may be arbi-
trarily complex.

Depending on the needs of a specific composition, it may
be necessary to adjust the logic. Still, the fundamental de-
sign separates triggering from musical logic and, just as in
SuperCollider, exposes areas within the patch to add new
mechanisms.

Conclusion

Programming for interactive compositions or sound art is
similar to other kinds of programming in an important re-
spect. Structures that are too simple (e.g. too many direct
connections) work well for very simple behaviors. Mov-
ing toward more complex behaviors quickly reveals limi-
tations, in particular, the risk that one change may force

several other changes, which may call for further changes
ad infinitum. Foresight in the early stages of creation helps
to bypass these limitations.

In this regard, digital artists are at a disadvantage com-
pared to conventional software developers. Traditional,
top-down models of software development begin with
“gathering requirements” before drawing up specifications
for program behavior—all before writing any code. Careful
specifications make it easier to plan object designs to meet
not only current requirements but also allow room to han-
dle future needs.

Digital artists are more likely to discover the requirements
by experimenting with incomplete code. The work of art is
the system’s behavior, and we do not know how the system
should behave until we interact with rudimentary proto-
types. (In fact, my own creative process begins with poorly-
structured code, but | move quickly to package interest-
ing behaviors into process objects. These processes al-
low continued experimentation and at the same time sup-
port object-oriented modeling, making it easy to introduce
loose-coupling strategies as soon as they are needed.) At
this extremely simple stage, the benefits of loose coupling
are not apparent, and the cost of creating Observers, Medi-
ators and other extensible components can appear to be a
waste of time. This article has demonstrated, on the other
hand, how an open-ended object design for external event
triggers facilitated a new version of Affectations/Torso, car-
rying the work forward into the future in a way that would
have been considerably more difficult had the components
been tightly coupled.

Restrictive code designs may impose a hidden cost during
initial creation as well. As noted, the creative process be-
gins with simple prototypes of behaviors that will grow in
complexity before arriving at a compelling result. Design
shortcuts (tight coupling, direct connections) are tempt-
ing, but they concretely impede the “free play” of ideas
that that is essential in creative work. Whenever one aban-
dons a musical impulse because it would be too difficult to
adapt the simple prototype to it, a creative choice has been
lost. If musician-programmers have extensible design tem-
platesin mind, ready to apply ata moment’s notice, the dis-
tance between inspiration and implementation decreases
and more interesting musical behaviors come within reach.
Instrumentalists practice scales so that they can think in
terms of groups of notes while sight-reading or improvis-
ing. Similarly, computer musicians can “practice” decou-
pling and come to think in terms of constellations of loosely
coupled objects. Ideally, computer musicians would be-
come so comfortable with better programming practices
that they reach for extensible code structures as a matter
of habit, rather than effort, expanding the available range
of musical possibilities.

50 Emille, the Journal of Korean Electro—Acoustic Music Society Vol. 11 (2013)

oo ooo o000 - Ooo/b0:00 000000000 OO0 O0oUO00 00D OO0 OO0 ODDO

References

Gamma, E. / Helm, R. / Johnson, R. / Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, Mass.: Addison-
Wesley.

Harkins, H. James. (2009). A Practical Guide to Pat-
terns. Retrieved from http://doc.sccode .org/
Tutorials/A-Practical-Guide/PG_01_Introduction
.html

Harkins, H. James. (2011). Composition for Live Perfor-
mance with dewdrop_lib and chucklib. In: Wilson,
S. / Cottle, D. / Collins N. [eds.] The SuperCollider
Book pp. 589-612. Cambridge, Mass.: MIT Press.

Krasner, G. / Pope, S. (1988). A cookbook for using the
model-view-controller user interface paradigm in
Smalltalk-80. Journal of Object-Oriented Program-
ming 1/3: 26-49.

Kuivila, Ronald. (2011). Events and Patterns. In: Wilson, S.
/ Cottle, D. / Collins N. [eds.] The SuperCollider Book
pp. 179-205. Cambridge, Mass.: MIT Press.

McCartney, James. (2002). Rethinking the Computer Mu-
sic Language: SuperCollider. Computer Music Jour-
nal 26: 61-68.

1 Dance Box Theater: http.//www.danceboxtheater.org.
2 Lorne Covington: http://noirflux.com.
3 More information about vvvv may be found at http://vvwv.org.

4 The site is a git repository containing the entire history of the revision
process. Readers unfamiliar with git may download only the latest
revision using the “Download ZIP” button on this page.

w

Events and Patterns were designed by James McCartney, and come to
SuperCollider Server from SuperCollider 2, the previous major
version. In addition to Ronald Kuivila’s excellent overview in The
SuperCollider Book (2011), | have written extensive documentation on
this framework, which is included in SuperCollider’s documentation
(Harkins 2009).

)

The extensions described in this article are part of SuperCollider’s
Quarks package system, described in the “Using Quarks” help file in
the SuperCollider distribution:
http.//doc.sccode.org/Guides/UsingQuarks.htmi.

~

The actions in a sequence follow the Command design pattern. A
Command represents an action in progress (Gamma et al. 1995). By
making the action into an object, the program can store actions and
pass them around to different parts of the system. In my framework,
for instance, a sequencer can come to an end while one or more
commands are still active. Those commands will be passed back to the
object that started the sequencer. Then, this parent object can decide
what to do with them: stop them, or pass them into a new sequencer.

8 Listing 3 includes the potentially confusing construction (inEnvir {
. do something ... }).defer. Thisis an implementation detail
that does not affect the code structure. SuperCollider requires any

000 - 00000000 000 0110 (2013)

GUI manipulation to be deferred onto a lower-priority scheduler, so
that GUI operations will not interfere with musical timing. Commands
in my framework are encapsulated in SuperCollider Environments.
The command’s environment is in force at the time of running
setDoneSignal, but the current environment switches back to the
previously active environment before the deferred function wakes up.
To be sure that the command’s environment will be active inside the
deferred function, inEnvir connects the function to the environment.

©

The control mechanism described in this paper uses an alternate style
of OOP called prototype-based programming. | needed to customize
certain objects’ behavior more than conventional OOP classes permit.
Object prototypes support the major features of OOP (inheritance,
polymorphism) and also allow radical changes in the structure of an
object at runtime: adding new data variables and methods, and even
rewriting methods. | have described my object-prototyping
framework, and its syntax differences from standard SuperCollider
class definitions, in an earlier article (Harkins 2011).

10 The command definition is very short because of another OOP

feature, inheritance. My prototype-based programming framework
handles inheritance using the clone method. PR(\funcCmd) .clone
{ ... } makes a copy of the original funcCmd object prototype and
then modifies it according to the clone function, which adds two
variables and three method definitions to the variables and methods
inherited from funcCmd. The inherited code handles playing and
stopping, and is in turn inherited from PR(\abstractTLCommand).

11 The frame-difference technique is based on the fact that a moving
object in the frame will cause individual pixels (which are stationary)
to change color. A change in color may be measured by subtracting a
pixel’s color in one frame from its color in the previous frame. Where
there is no motion, the difference will be small and the pixel will go
dark; thus, lighter image areas show where movement is taking place.
GEM'’s [pix_movement] object implements this.

12 A centroid is, generally, a center of mass. Here, considering brighter
areas of the image to be “heavier” in terms of amount of motion, the
centroid is the location in the sub-frame where the motion is
centered. If most of the movement is in the bottom right corner of the
sub-frame, the centroid will have large = and y coordinates.

13 Note, in prRespond, that the trigger condition has three possible
outcomes: goAhead to fire the trigger, respond when the test fails,
and notYet when the test was successful but the countdown is still in
progress.

14 The corresponding Max/MSP object is [bpatcher].
15 The corresponding Max/MSP object is [forward].

16 Max/MSP’s [coll] object can be used for the same purpose.

51

H. James Harkins — Affectations/Torso: A case study in future—proofing interactive computer music through robust code design

[Abstract in Korean | & 29
RU/ES: 2 AE HAlrobust code design

i
ofm
of

ot Ol XY 4=x8 AFE A0 chst Aty A

ool HMY2 StZI=

2 A7= ZXel AFYH 29 HE R/ Affectations/Torso) 0| A& E Z22f 7|40 LDt A=, [k
HENE &2 =TO| O[5HA 37| I3 =2aste 7|=2M J=R2| AHMOAE FHE-SAYX AHEO|AZ
TS| iMSte AE Zootth 2 AF0Me 428 HAFH SAUAM 2 X0 chst "2 LAof ois
2510, QIHMO|A uHE =ETSHA TE= ZE EA ofg, S5 74 245 ol LA Ao s =2olotct
O] 7ol FHe H=%HE A2 &2 fst ZEO24Y stA0AM O YetMo=z CHROX|= FH QG
7—|Hx1|xlég EEJEI:II{ o|_10'|0|_| %E-Ig_al'olEISuperCollider% AI'%5P01 a O:"% %_T'_ 9;[9'11, -F;L—O‘lt‘”OlE‘IPure Data% %-ﬂ'
OFX|2} O Al0 M= e T patching EHE0IM S Lot YE2[E0| HEE + UCk= 7tsdE EO F1a Ut

52 Emille, the Journal of Korean Electro—Acoustic Music Society Vol. 11 (2013)

	Affectations/Torso
	Object-Oriented Programming concepts
	Control over large-scale form
	Large-scale timing by triggers
	Video control implementation
	Trigger dispatch in Pure Data
	Conclusion
	References
	[Abstract in Korean | 국문 요약]

