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KLANGPILOT is an environment for sound analysis as well as for control of sound synthesis. Currently additive, subtractive and formantic synthesis
are supported in parallel through optimized externals for Max/MSP with multi-processor support. Sound samples can be analyzed for their spectral
content as well as for their noise components. These data are then submitted to a process of data reduction, abstraction and simplification in order
to turn them into human readable models of sounds. Alternatively the user can define such models from scratch using a highly intuitive set of editors
for frequencies, amplitudes, envelopes and other musical parameters. Equally one can modify the sound models obtained by analysis in the same
interface. These sound abstractions can be arranged into a ‘timbral score’, an extension to the classical piano roll capable of displaying detailed spectral
information as well. This new paradigm may ease composing music, where the visibility of sound details is crucial for the artistic process. Furthermore
one can create and handle hybrid sounds through a morphing algorithm, allowing the interpolation between given sound models. Differently to the
classical analysis/re-synthesis approach, KLANGPILOT aims to reduce the complexity of sound description to a minimum: instead of seeking the (almost)
perfect re-synthesis of original sources, the main focus is the idea of providing a spectral score language by extending classical music notation. This
new score language — which also can be connected to tools for computer aided composition — could have a strong impact on electronic composition,

comparable to the impact of music notation and music printing in earlier centuries.

Introduction

When extending the creation of music with the use of elec-
tronics and even when using non-standard playing tech-
niques on acoustical instruments, we are still, in some
sense, in a state similar to ‘oral culture’ (Bennett 1996).
The articulation of an expressive vocabulary, which can-
not be represented well by the traditional music score, of-
ten forces composers to use confusing or vague verbal de-
scriptions and/or the distribution of heterogeneous per-
formance material, like a paper score plus digital media.
Both verbal descriptions and mixed performance material
lack standardization. This makes the creative process diffi-
cult and performances nearly impossible to pull off with-
out the composer’s presence. Furthermore, we have to be
aware that on one hand pitch, dynamic level, and rhythm
can be notated in a way that accurately/reasonably repre-
sents the aural result, allowing the experienced musician
to imagine the sound by looking at the notation. On the
other hand timbral characteristics of music cannot easily
be notated with this degree of precision. We must either
use symbolic or textual description of actions (fingerings,
playing techniques etc.) in the case of paper scores, or save
technical parameters for computer programs in some ab-
stract file format. Both methods are not intuitive and effi-
cient working methods for composers.

Especially when working with sound synthesis, the need
for an extended graphical score language (that is human-
readable but still can handle the complexity of all needed
sound parameters) becomes obvious. While several at-
tempts have been made, ranging from the graphical score
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for Ligeti’s ‘Articulations’ (Ligeti / Wehinger 1958) to soft-
ware like 'Acousmographe’, none of these truly solves the
problem, since they provide post-facto symbolic represen-
tations of analysis put together after the creative process,
and are not suitable as production tools. Other graphical
scores like those by John Cage or Roman Haubenstock—
Ramati (Karkoschka 1972) leave much ambiguity of inter-
pretation to the performer and are far less specific than
traditional scores, which restricts their usefulness to spe-
cific aesthetic approaches.

General design

From the very beginning the design of KLANGPILOT (Kretz
1999; 2002) was inspired by the work of Marco Stroppa
(Agon / Stroppa / Assayag 2000), Jonathan Harvey (Harvey
1981; Machover 1984), Jan Vandenheede (Vandenheede
1991; Vandenheede / Harvey 1985) and Steven McAdams
(McAdams 1982; 1989) and experiences with the
Patchwork environment (Laurson / Duthen 1989). Also
the idea of accessing sub-parameters of timbre like
brightness, spectral flux, percussivity and harmonicity as
described by Grey and Moorer (Grey / Moorer 1978) was
essential.

The current version of KLANGPILOT is under development
at the Centre for Innovative Music Technology (ZiMT) at the
University for Music and Performing Arts ViennaZ. It is re-
alized completely within the Max/MSP environment and
uses highly optimized externals for sound synthesis (pro-
grammed in C+* by Adam Siska). The GUI, programmed by
Johannes Kretz, consists of a Score Editor (see Figure 1),
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Figure 1. An example score in KLANGPILOT, revealing as well the main control elements of the software on the bottom of the screen.
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Figure 2. The Instrument Editor, where the base components and the envelopes of the instruments can be set.
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an Instrument Editor (see Figure 2) and an Analysis Tool
(see Figure 3). The Score Editor gives a timeline view al-
lowing the arrangement and playing back of ‘notes’ (sound
events) performed by KLANGPILOT instruments. In the In-
strument Editor a KLANGPILOT instrument can be creat-
ed/edited. These instruments can use either one or several
of the supported synthesis methods simultaneously.

‘start_analysis

) [ verbose mode

() etapsed time (sec)

Figure 3. The Analysis Tool.

A KLANGPILOT instrument can also be obtained from anal-
ysis of any given sound file. Nevertheless it is recom-
mended that short sounds (a few seconds) containing a
single note or sound event are used (see Figure 3).

Data representation and interpolation

In order to define, edit and store synthesis parametersin a
generalised way, we developed a data format shared by all
objects of KLANGPILOT. The atomic element of our data
representation is the Parameter, which may either have
the form m, or p,(t). Here, n denotes the Channel Num-
ber (the channel to which the actual parameter belongs
to) and ¢ is a Timecode: if the Parameter is part of a time-
dependent envelope, the Timecode defines the temporal
position of the Parameter within that envelope. Parame-
ters in the form 7, are collected into Static Data Sets (SDS),
while those in the form p,(¢) are organised into Dynamic
Data Sets (DDS).

Amplitudes, Frequencies and Durations of the different
channels are all examples of Data Sets for different syn-
thesis methods. We illustrate the difference between an
SDS and a DDS through the following example: in additive
synthesis, each oscillator has an instantaneous frequency
value, changing over the time. We may define the instan-
taneous frequency on the channel n as the product of the
(constant) base value w, and the (time-dependent) enve-
lope f,(¢). In this case, {®, } = Qis an SDS while {f,,(t)} =
F is a DDS.

The synthesizers expect a well-defined collection of SDSs
and DDSs for their operation. Moreover, these sets must
be dense. To understand what we mean by this, let
us suppose that a synthesis method expects the SDSs
! ¥2...%% and the DDSs S',S2...5%. Let nma denote
the highest Channel Number occurring in any of the sets
rl...x9 S1... 8% and let T? denote the set of every Time-
code occurring in the set S'. Then, the SDS X/ is said to
be dense if it contains a valid Parameter for every possible
Channel Number n € {0...nmax }, while the DDS ' is said
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to be dense if it contains a valid Parameter for every possi-
ble Channel Number n € {0...nm,x } and Timecode t € T".
Roughly speaking, synthesizers expect every descriptor of
every channel to be ‘fully defined’ in order to work.

As an example, a simple additive synthesis of 50 oscillators,
each one having an amplitude and a frequency described
by two constants and two separate envelopes (each of
these having, for example, 9 breakpoint values), would re-
quire 50 x 2 x (149) = 1000 parameters, which is beyond
the ‘human-readable’. To overcome this problem, we de-
veloped two separate interpolation methods for SDSs and
DDSs, allowing the users to enter only a few key parameter
values and let KLANGPILOT generate the rest.

For SDSs, the engine simply interpolates every missing Pa-
rameter based on the (sparse) set of values {7, } provided
by the user. This interpolation may either be linear or
exponential-like; however, if the lowest Channel Number
(denoted /) in the user-supplied Data Set is bigger than 0,
then the Parameters of the lowest channels would be de-
fined as m; = my (0 <i < {). The same applies if the highest
user-provided Channel Number (denoted %) is smaller than
Rmax, in Which case ; = 7y, (h < i < nyax ) applies. The pro-
cess is depicted in Figure 4.
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Figure 4. Interpolation of a SDS (using linear interpolation). The four black
points indicate the user-defined ‘sparse’ data. The dashed line is the result
of piecewise linear interpolation based on the original data set. The gray
points show the ‘dense’ SDS that we get by evaluating the interpolated
line at each Channel Number.

For DDSs, the interpolation is slightly more complex.

Firstly, we split the user-provided DDS (denoted as { p,(¢) })
into subsets according to the Channel Numbers of the Pa-
rameters: PC'N = {p,(¢) }|,—;. This way we get the disjoint
sets P'N, where each Parameter p € PC™N has a different
Timecode (but the same Channel Number). Then, for each
subset P°"N, we interpolate the missing parameters for ev-
eryt € T,where T denotes the set of Timecodes appearing
in the user-supplied DDS (formerly introduced as 7" for the
specific DDS §). At this point, we always use (piecewise)
linear interpolation.

Secondly, we take the DDS generated by the previous step
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(denoted as {p,(z)}) and split it again into subsets, this
time according to the Timecodes: P! = {p,(¢) }|;=+. Then,
for each subset P,T, we interpolate the missing parameters
for everyn € {0...1max }- This interpolation may either be
linear or exponential-like.

We may see the above method as a process that first com-
putes the full envelopes of those channels which already
have at least one user-defined paint, and then generates
the rest by interpolating between the full envelopes. We
refer to Figure 5 for an illustration of the full process.

Figure 5. Interpolation of a DDS. The original data is shown with red dots.
The red envelopes contain only data which was already specified by the
user. We get the pink envelope after the first interpolation step, in which
we interpolate two missing data points on that same envelope based on
the three initial user-defined data points specified for that envelope. In
the second interpolation step, we interpolate the rest of the envelopes,
shown in black. The final results of the interpolation are depicted as or-
ange points.

Synthesis tools

In KLANGPILOT, synthesizers are defined as multi-channel
devices. The channels of the same synthesizer — although
running the same algorithm — operate independently
from each other, with separate sets of parameters. These
parameters are defined through SDSs and DDSs: if {£°} U
{5*} denotes the set of every parameter, the parameters
belonging to the i channel would be {77} U {pi(r)},
where 77 € X9 and pi(z) € §°.

Regardless of the synthesis method, two SDSs are defined
by every synthesizer: the Offsets and Durations of the
channels. The former defines the time when the actual
channel turns on, and the latter defines the time frame
until which the channel is active. To achieve this, the Time-
codes belonging to the it channel of each DDS are scaled
linearly to extend between the Offset and the sum of the
Offset and the Duration of the it channel. Furthermore,
the synthesizers normalise internally every time value to
a phase between 0 and 1 (so that the biggest Offset +
Duration value would be normalised to a phase of 1}).

Synthesizers may have an overall duration, in which case
they would play a sound with the given duration, from be-
ginning to end, when triggered. However, they have an

(optional) phase input as well. If this latter is being used,
the synth would jump to the specified phase and ‘freeze’
until a new phase value is received; when ‘frozen’, the in-
stantaneous values of parameters defined by DDSs are kept
constant, which allows the synthesizer to ‘freeze’ the tim-
bre.

Three synthesis methods have already been implemented
using the above principles:

Additive.An oscillator bank; channels correspond to
oscillators.

Subtractive.A filter bank; channels correspond to
biquadratic band-pass filters.

Additive formant.A method inspired by the CHANT
synthesizer (Rodet / Potard / Barriére 1984);
channels correspond to formant wave functions
(fonction d'onde formantique, FOF).

Table 1 presents the core descriptors (except for Offsets
and Durations) of the above methods.

The core parameters of the synthesizers may be modulated
in two different ways: on the one hand, with a sinewave os-
cillator (which we call ‘modulation’} and, on the other, with
band-limited noise (which we denote as ‘jitter’). The (si-
nusoidal) modulation may be described with an amplitude
and a frequency value, whereas the jitter is parametrized
with its amplitude and bandwidth3. Each of these modula-
tion parameters are described by separate DDSs. However,
in contrast to core values, modulation parameters may be
omitted, in which case the synthesizers would automati-
cally turn modulation off.

One may see that the maximum number of Data Sets de-
scribing the synthesis methods of KLANGPILOT could be
quite high: additive synthesis may use up to 14, while
subtractive and formant syntheses up to 20 Data Sets,
although not every possible combination of modulations
and core values has been implemented due to efficiency
reasons (e.g. modulation of the Q—factors of subtractive
synthesis is not yet possible). Table 2 lists all parameters
of additive synthesis; the other two cases are very similar.

Analysis engine

The purpose of our analysis engine is to convert an
incoming signal into a set of SDSs and DDSs which can be
understood by the synthesizers. Our model follows the
approach of Spectral Modeling Synthesis (Serra 1997},
where the signal is represented as a sum of sinusoids and
noise. The analysis comprises the following steps:

1. Decomposition of the signal, using Short-Term
Fourier Transform (STFT).
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Channels correspond to... Core Parameters
Additive ...(sinusoidal) oscillators Oscillators” Amplitude & Frequency
Subtractive | ...biquadratic band-pass filters Bands’ Gain, Centre Frequency & Q—Factor
Formant ...FOF generators Formants’ Amplitude, Centre Frequency & Bandwidth

Table 1. Most important parameters per synthesis channel for the different synthesis methods. Each of the above parameters is obtained as the product
of a constant base value and a time-dependent envelope. The formers are derived from SDSs while the latters from DDSs.

SDS DDS
Amplitudes”
Frequencies*
Modulator Amplitudes (AM)
Offsets” Modulator Frequencies (AM)
Durations” Modulator Amplitudes (FM)
Amplitudes* Modulator Frequencies (FM)
Frequencies” Jitter Amplitudes (AJ)
Jitter Frequencies (AJ)
Jitter Amplitudes (FJ)
Jitter Frequencies (FJ)

Table 2. A list of every allowed SDS and DDS for additive synthesis. ‘A’
stands for Amplitude, ‘F’ stands for Frequency and *J’ stands for litter.
Starred Data Sets are mandatory.

2. Partition of the Fourier-components: we identiy
the Tonal Peaks and the Noise Bands within the
result of the previous step and isolate them from
the rest of the data. Tonal Peaks are the spectral
components describing pure sine waves with
high likelihood. Noise Bands are the ‘flat regions’
of the spectra which can be interpreted as white
noise filtered by single biquadratic band-pass
filters.

3. Data aggregation: Tonal Peaks are organised into
envelopes — each envelope describing the
time-dependent parameters of a single
sinusoidal oscillator — by means of partial
tracking. Our partial tracking method
approaches the problem by distinguishing
between the short-time and long-time behavoiur
of a partial: firstly, it creates short-time
‘envelope chunks’ and secondly, these chunks
are merged into long-time envelopes. The same
procedure is applied to the Noise Bands?,
although these envelopes describe filters’
parameters instead of oscillators’.

4. Envelope reduction: the envelopes are organised
into ‘dense’ DDSs, containing every breakpoint
value obtained in the previous step. Then, we
reduce the number of actual Parameters
contained by the DDSs by means of piecewise
linear regression.

The algorithm that finds the Tonal Peaks as well as our
two-step partial tracking method was presented in (Siska
2012). In the rest of this section, we concentrate on the last
step of our analysis engine, that is, Parameter reduction.
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Normally, a DDS obtained after the 3™ step contains
much more information than what we consider ‘human-
readable’ — the number of Parameters in such a DDS is
normally well over a thousand! However, much of this in-
formation can be eliminated by removing those Parame-
ters which can be reconstructed by our interpolation en-
gine. Note that this is a lossy compression of the data, as
the Parameters interpolated by our interpolation tool will
differ a little bit from the originals in most cases; this is the
price that we need to pay in order to efficiently reduce our
Data Sets to a ‘human-readable’ size.

The reduction of a DDS happens in two steps, which act as
if they were the inverses of the steps involved in the DDS
interpolation method, presented in Section . For this
algorithm, the user needs to supply an error percentage,
describing the maximum allowed deviation between a
Parameter obtained from analysis and the one
reconstructed by interpolation:

1. We split the DDS generated by the analysis
(denoted as {p,(¢)}) into subsets according to
the Channel Numbers of the Parameters:
PN = {p, (1) }|n—i. Then, we apply the
following algorithm, starting with i = 0:

(a) Letj=i+1, ‘
A=V e T : A™ (1) = —co}
and

AT = {Vr e T : AM3X (1) = oo},
Here, T denotes the set of
Timecodes appearing in the DDS
generated by the analysis.

We compute, for every value

t € T, the estimated Parameter
subset chfi\l using linear
extrapolation, based on the
respective Parameters of PI.ChN
and PEON,

(c) We compute the allowed
minimum and maximum
deviations (based on the
user-defined error percentage)
for every Parameter in 151(1‘{\I (we
denote these limits ﬁ;"jr“l () and
I 0)

For everyt € T, we compute the
values 11;71}111 () and /:tl“}‘i‘l (1),
which are the inclinations of the
lines defined by (p,-(t),ﬁ?i"l (t))

and (pi(0). P2 (0)),

(b

(d
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respectively. '
We update the sets A™" and

A™ according to AN (1) =

°
LS

max( (;?é“(t)f;"}iﬂ,(t)) and
ew (1) =

min (l(')‘l‘g"(z),;l,{‘ﬁ‘l (t)> for

everyte€T.
() 1AM (1) < 2 1 (1) < AT (1)
holds for eacht € T — where
Ai,j+1(t) denotes the inclination
of the line connecting p ;1 (¢)
and p;(t) —, we remove PjChN
from the DDS and increase j by
L.
Otherwise, we set i to the
current value of j and start over.
We repeat these steps as long as we don’t reach
the highest Channel Number, with some
additional considerations on the boundaries
(these are i =0 and j = nmax)-

(g

2. We execute a similar reduction algorithm on
each of the remaining sets PN independently,
always starting from r = inf(7'):

(a) Let T =1, wheret'is the

successor of t within the set T,
)Lmin — —ooand AMaX — oo,

(b) We compute the estimated
Parameter p;(7’) using linear
extrapolation, based on p;(r)
and p;(7).

We compute the allowed

minimum and maximum

deviations (based on the
user-defined error percentage),

denoted p"(7') and pM¥ (7).

Then, we calculate the

inclinations of the lines

connecting these values with
pi(1).

If the computed minimal and

maximal inclinations are bigger

or smaller than AMN or AM3X e

substitute these with the new

values, respectively.

If the inclination of the line

connecting p;(¢) and p;(7’) lies

within the range [A™in, 3 max],
we remove p;(t) from PN and

setTto 7',

(c

=
o

-

(e

(f) Otherwise, we sett to the
current value of 7 and start over.

We repeat these steps (for each remaining set

PiChN) as long as we don’t reach the highest

Timecode, with some additional considerations

on the boundaries (these are t = inf(7") and

T =sup(7T)).
Figure 6 depicts how the allowed minimum and maximum
inclinations are computed for a specific reference point.

Value
*

Timecode

Figure 6. Finding the points that fit into the same line segment. Red dots
indicate the original values. The current ‘reference point’ is the 3" dot
from the left. The black lines indicate the computed minimum and maxi-
mum inclinations for each subsequent data. The dotted lines indicate the
inclinations defined by A™" and A™2X, As we can see, the 4™, 5t and 6th
would fit on the same line.

We could summarize the above procedure as follows.
Firstly, we remove those full-envelopes from the analysis
results which can be fully interpolated by the neightbour-
ing envelopes. Secondly, we take the remaining envelopes
and remove all those data points which can be interpo-
lated by the neighbouring data points. At the end, we get
a sparse Data Set which only contains the Parameters that
are crucial in order to reproduce the original information
within the error constraing given by the user.

User interface

The graphical paradigm of the KLANGPILOT score

language can be seen as an extension of the classical
piano roll (see Figure 1). Unlike MIDI files and normal
piano roll representation KLANGPILOT also supports:

e Microtones — graphically represented at the
maximum precision of eight notes, internally
stored as floating point numbers allowing almost
arbitrary precision.

e Polyphonic microtonal glissandi.

e The size of the note head and the thickness of
the beam representing the duration of the note
give an impression of the loudness at the
beginning and the end of each note.

e The color of events can be used to indicate
different instruments.

e Labels showing the instrument’s name above
each note can be activated.

e If instruments are contained in the KLANGPILOT
instrument database, their spectrum and their
envelopes can be displayed.

Rhythm is represented as position of the notes in the x-
axis. A user defined grid can be used to quantify time into
beats and subdivisions of beats in a given tempo for enter-
ing metric music.
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Figure 8. Dynamic interpolation between the two instruments. Horizontal
position denotes time while the vertical one sets the ratio between the
two instruments.

In general, the design philosophy of the KLANGPILOT score
language is that the display of certain information such
as spectrum, envelopes, instrument names etc. is optional
and can be enabled/disabled. The user can decide about
the complexity with which the musical information is rep-
resented at a given moment (see Figure 1).

Figure 9. Dynamic interpolation between multiple instrument timbres.

The instrument editor is designed to give access to all pa-
rameters of sounds synthesis, while making a big effort
to reduce the complexity of representation to a minimum
(see Figure 2)
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hello, world

Figure 10. Example drawings on the new canvas.

Currently a hybrid editor is under development, which will
allow the merging of two or three instruments statically or
dynamically (see Figures 7-9).

Future work

At the moment we are developing a new canvas object as a
replacement of Max/MSP’s LCD object for graphical repre-
sentation and user interaction (see Figure 10). It directly
supports the touching, moving, and resizing of graphical
objects in the canvas without the need of recalculating
them in the frame of Max’s message objects. In addition,
new algorithms for efficient sound analysis and reduction
of complexity of the data for synthsis/artistic editing are
explored.
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