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Abstract. The functorial approach (functors are structure-preserving maps between mathematical categories) to mathematical music theory and
music informatics is presented. It is applied to the theory of musical gestures and its implementation in the Rubato software. We discuss musical
analyses based upon gestural theory. Then the mathematical approach to musical creativity is introduced. Using Yoneda’s lemma these ideas are
applied to understand Beethoven’s six variations of the third movement of sonata op. 109. The paper concludes with the semiotic generalization of
this mathematical model and its application to a theory of contemporary counterpoint.

In this paper we refer to the functorial approach in
mathematical music theories (Mazzola, 2002). We shall
explain in details what “functorial” means in the next
section “Functors in Music”. Suffice it here to say that it
is based on category theory, a unified approach to
modern geometry, logic, computer science, and
theoretical physics. A category is a formal structure that
describes a determined type of mathematical objects,
such as groups, or vector spaces, together with
corresponding functions, which preserve the given object
structures, such as group homomorphisms, or linear
maps. A characteristic result of this theory is Yoneda’s
lemma. It states in intuitive terms that you can
understand a sculpture if you integrate all its
perspectives. In music: you understand a composition if
you know all its interpre-tations. We give a detailed
description of this lemma in the section “Yoneda’s Lem-
ma”.

This method has been applied to models of harmony,
counterpoint, and melody (Mazzola, 2002). It has been
implemented in the Rubato software, developed since
1992 at the Computer Science Institute of the University
of Zurich. Rubato is documented in (Milmeister, 2009).
Let us shortly describe the design concept of Rubato. The
software was developed for musical analysis,
performance, and composition. Its components are
called rubettes. They can perform any specific task. For
example, the Metrorubette takes a MIDI file and
calculates a metrical and rhythmical analysis associated
with the file’s onsets. There are rubettes for melodic
analysis, harmonic analysis, musical composition, and
there is a Performancerubette, which calculates a
musical performance (tempo, articulation, dynamics) of a
MIDI file, using the analytical rubettes’ results for this
file. Rubettes can be connected with each other in order
to pipe output results to input slots. For example, the
output of the Metrorubette’s metrical analysis is piped to
the input of the Performancerubette to shape perfor-
mance. Rubettes can be connected to build rubette net-
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works. The condition of universal connectability among
rubettes is that the output format must be compatible
with the input format of rubette data. To meet this
requirement, we have developed a universal musical
data format, whose instances are called denotators.
Rubettes understand this format and can therefore be
interconnected without any limitation.

The functorial approach has also been applied to model
musical gestures, and a Rubato module, the BigBang
rubette, for gestural composition, has been implemented
by Florian Thalmann (Mazzola and Thalmann, 2011).
Gestures are systems of continuous curves in topological
categories. This theory has also been applied to under-
stand motivic constructions in Beethoven’s sonata op.
106 (see Mazzola 2009).

Functoriality is not only a creative tool, but it allows to
model musical creativity in general. We first describe a
mathematical model of creativity, based on Yoneda’s
lemma, and then generalize it to a generic semiotic mo-
del of creativity. Its principle is based on the exhibition of
a creational open question, then the determination of its
semiotic context, together with the specification of a cri-
tical concept, then the investigation of the concept’s
problematic properties (which we call walls), then their
opening, then the extension of the concept, and the ap-
plication thereof to the given problem.

Both, the mathematical and the semiotic model, are
described in detail in the book (Mazzola, Park, and
Thalmann 2011). In this paper we give a summary of
these theories and some applications and hope that our
contributions might inspire music theorists, musicians,
and computer music programmers as well.

Functors for Music

We introduced functors in music in (Mazzola 1985) and
then implemented the functorial approach systematically
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in the music software Rubato since 1992. The original
motivation to do so was the music-philosophical insight
that understanding a musical composition means to look
at it from all possible points of view, in other words: to
interpret it in all possible ways and then to integrate
these perspectives.

The general framework for such an approach was
mathematical category theory, invented by Samuel Eilen-
berg and Saunders Mac Lane around 1945 to better un-
derstand some universal constructions in algebraic to-
pology. Since then, category theory has become a driv-
ing force in many advanced mathematical areas, espe-
cially in algebraic geometry, where Alexander Grothen-
dieck and his French school triumphed in solving the high
ranked conjectures of Weil and Fermat.

Let us shortly explain category theory. The central con-
cept is that of a category ¢@. This is a collection of so-
called objects, denoted by X, Y, Z,.... Together with a set
Hom (X,Y) for every pair X,Y of objects, whose elements f
are called morphisms from X to Y and are denoted by
arrows f: X —Y. It is further possible to compose mor-

phism f: X —Y, g: Y —Z, yielding the composed mor-
phism g.f: X —Z, and this operation is associative. Fi-
nally, we have an identity morphism Idy: X — X for every
object X, such that f.Idyx = f = Idy.f for every morphism f: X

—Y.

The standard example of a category is the category ¢ =
Sere of sets with the sets as objects and the set maps as
morphisms. Other well-known categories are ¢ = 7eg,
the category of topological spaces and continuous func-
tions, or ¢ = D¢, the category of directed graphs (di-
graphs) and graph maps, or ¢ = %4y, the category of R-
modules and affine maps for a commutative ring R.

Unfortunately, most categories are much less natural.
The generality of this theory had to be paid by a dramatic
loss of intuitive power. The Japanese computer scientist
Nobuo Yoneda found a solution to this problem in 1955,
a theorem called the Yoneda lemma. It is easy to prove
but has enormous consequences since it allows to rein-
terpret objects and morphism in terms of classical sets
and set maps, even in the most abstract categories.

Yoneda only used one more concept from category the-
ory to present his result, namely the concept of a func-
tor. A functor is a kind of map between two categories.
More precisely, if ¢, D are two categories, a (contravari-
ant) functor is a map t: ¢ — D that maps every object X
of ¢ to an object t(X) of 2, and also maps the sets
Hom (X,Y) to the sets Hom,(t(Y),t(X)) (attention: revers-
ing arrow directions, this means contravariant) in such a
way that the identities go to identities and such that the

composition of morphisms goes to the (reversed) com-
position of their images: t(g.f) = t(f) . t(g). Yoneda looks a
very special such functors. He selects an object X of ¢
and then defines the functor @X: ¢ — Sez, mapping
an object Y of £ to the set Y@X = Hom,(Y,X), and map-
ping a morphism f: Y —Z to the set map f@X: Z@X —
Y@X with f@X(g) = g.f. This means that Yoneda replaced
every abstract object X of the category ¢ by a system of
sets Y@X, parametrized by the objects Y of ¢, and con-
nected by the set maps f@X. Instead of looking at the
abstract object X Yoneda suggested to look at the sets
Y@X. Intuitively, this means to look at all the arrows
(morphisms) g: Y — X that start at object Y and target at

object X. You imagine sitting on Y and looking at X. This is
why Y is also called the address of g. Instead of sets, gen-
eral category theory envisages systems of sets Y@X that
are parametrized by the addresses Y, objects of ¢ Ele-
ments of Y@X are called Y-addressed points of X.

Yoneda’s Lemma

What is the big advantage of Yoneda’s approach? He
could prove that if you know the functor @X, you know
all of X! Without delving into technical details we may
just acknowledge that Yoneda’s lemma proves that two
objects X; and X, are isomorphic if and only if their func-
tors @X; and @X, are so. Intuitively this means that un-
derstanding X is equivalent to understanding its functor
@X, and this in turn means to understand all the sets
Y@X with variable addresses Y.

This result was a dramatic step towards a better control
of abstract categories by a reconstruction of classical sets
and set maps!

Although it seems that the functor @X is much richer
than X, it is essentially the same, this is another state-
ment of Yoneda’s lemma. We may now start working in
@X instead of X and do many useful and essential opera-
tions which in fact are all restatements of facts that re-
gard X. In mathematical music theory, we systematically
used this functorial point of view to define and analyze
musical structures and relations. Let us look at some rep-
resentative examples.

Lewin’s Time Spaces. David Lewin uses time-related
structures, time spans. A time span is a pair (b,x) of an
onset time b and a (non-zero) duration x, both are real
numbers. The analysis of Lewin’s transformational laws
between such time spans (Mazzola, 2002, p. 83) shows
that these objects are precisely the R-addressed points
(b,x): R — Onset(R), with (b,x)(t) = b + xt, of the one-

dimensional real time space Onset(R).
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Dodecaphonic Rows. A dodecaphonic row r in the pitch
class space PitchClass(Z4,) is a sequence r = (ro, r,... r1)

of pairwise different pitch classes r; in PitchClass(Z,,).
This is equivalent to giving an Z™-addressed point r: Z"
— PitchClass(Z1,). More generally, a row in serial
theory is an Z''-addressed point r: Z'' — P of a

parameter space P (with twelve pairwise different
values) that could represent duration, loudness, attack
type, etc. For details, see our analysis of Boulez’s serial
composition Structures pour deux pianos (Mazzola,
Losada, Thalmann, and Tsuda, 2009). It is remarkable
that the entire compositional approach by Boulez resides
on operations on address 7" as well as on its derived

address, the affine tensor product Z"'@Z".

Harmony. In his reconstruction of Riemannian harmony,
Thomas Noll (Noll, 1995) uses self-addressed points p of

pitch classes, i.e. points p: Z,,—> PitchClass(Z,,) instead

of pitch classes. Pitch classes then are interpreted as
constant self-addressed points.

Counterpoint. The mathematical theory of counterpoint
(Mazzola, 2002, Part VII) views intervals of pitch classes

as points i: Z — PitchClass(Z4,), which is equivalent to

give two pitch classes: one, namely cf(i) = i(0), for the
cantus firmus value, and the other, namely d(i) = i(1)-i(0),
for the interval value from cantus firmus to discantus.
The theory then uses this identification of an interval i
with a pair (cf(i), d(i)) to calculate contrapuntal structures
and laws. The algebra for this calculus is provided by the
representation of the pair (cf(i), d(i)) as a dual number

cf(i)+ .d(i) in Z1[€] (* = 0).

Gestures: A Musical String Theory

Despite the power of functors, mathematical music
theory still lacked the description and analysis of an
essential aspect of musical realm: gestures. Already
David Lewin in his celebrated book about musical
transformations (Lewin 1987) speaks about gestures.
However, his theory is still processual, half way between
facts and gestures in terms of the dimension of
embodiment. But it is remarkable that, relating to his
crucial question about the transformational movement
from a musical point s to a point t, he adds: “This attitude
is by and large the attitude of someone inside the music,
as idealized dancer and/or singer. No external observer
(analyst, listener) is needed.” Lewin felt that gestures
are the substance underlying processual transformations.
But he was not well grounded in the mathematical
theories for gestural approaches.
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In (Mazzola and Andreatta 2007) and (Mazzola 2009) we
have exposed a mathemaical theory of musical gestures,
also called a musical string theory because it essentially
relies on continuous curves in topological spaces, similar
to physical string theory. A gesture in a topological space
X is defined as follows. We consider the digraph
Curves(X) whose arrows are the continuous curves c: |
— X, defined on the real unit interval |1 = [0,1], and
whose vertices are the points of X, while the head of an
arrow cis h(c) = ¢(1), and its tail is t(c) = c(0). A gesture in
X is a digraph morphism g: [ — Curves(X), where the
digraph T is called the curve’s skeleton, and X is called its
body. This means that every arrow in the skeleton is
associated with a continuous curve in X, and the coin-
cidence of heads and tails of arrows in the skeleton is al-

so met in the body, see Figure 1.

e
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Figure 1. A gesture g with skeleton ' and body X.

Although gestures look like curve structures, they
actually enable very complex shapes by the following
fact: The set F@Curves(X) of all gestures with skeleton I
and body X is canonically provided with a topology, i.e. it
is itself a topological space. It therefore makes sense to
consider gestures h: A — Curves(T@Curves(X)) of

gestures! We call such gestures hypergestures. And this
process can be iterated ad libitum. If we have a sequence
My Mot Fno... T1 of digraphs, we denote by I,@l,.1@T,.
2@... 1@ Curves(X) the space of n-fold hypergestures. It
can be shown that this space is topologically isomorphic
(homeomorphic) to any space ly@T o(n-1)@T pn)@... T
(1)@ Curves(X) constructed by a permutation p of the n
digraphs. This theorem is called the Escher Theorem
(Mazzola and Andreatta 2007) since it allows to view
internal digraphs in hypergestures as external ones and
vice versa, similar to Escher’s famous flip-flop graphics.
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This enables the construction of hypergestures that are
based upon curves of curves of curves, etc. And this
means: Gestures that describe surfaces, cubes, and
higher voluminous shapes. Moreover, since the body of a
gesture can also have time in its coordinates, it is
automatically possible to consider gestures that in fact
describe movements of complex bodies in time. And this
is what one expects from a valid theory of gestures: the
conceptualization of complex shape movements. We
have applied gesture theory for both, musical analysis
and composition.

Remark for mathematicians. We should recall the
natural generalization which gestures provide for
classical algebraic methods. In abstract algebra, diagrams
are most important formal setups for complex processes.
A diagram is a digraph morphism g: I — |¢£]| with
values in the digraph |¢| defined by a category ¢. This
can also be restated as a (covariant) functor g: Path(I)
— ¢ on the path category of digraph . One might then

consider the category CPath(l') of continuous paths over
I. It not only looks at paths starting and ending of
vertexes of [, but takes paths startig and ending
anywhere on the arrow shapfts of . This category is
called category of continuous paths over I'. One might
then look at continuous functors g: CPath(l') — ¢ with
values in a topological category ¢. There is an adjointness
isomorphism
Hom(CPath(l), € ) =Hom(l, Curves(Z))

Here the curves are the continuous covariant functors |
— ¢ from the category | whose obects are the points of

I, and whose morphisms are the pairs (x,y), x = vy. It
means that gestures in a topological category ¢ (in
particular in a topological space) are the same as
“continuous” diagrams, i.e. diagrams on continuous
paths over I. Because of the above adjunction, we may
call them gesture diagrams, they correspond one-to-one
to gestures. Traditional diagrams are obtaind from
gesture diagrams by their restritcion to the sub-category

Path(r) C CPath(r).

Gestures in Music Analysis

Let us first discuss a gestural analysis of the beautiful
fanfare at the beginning of the Allegro movement in
Beethoven’s sonata op. 106 (Hammerklavier), see Figure
2. If we represent the time coordinates, onset and
duration of these notes, we obtain a set of eight points in
the plane spanned by onset as horizontal axis and
duration as vertical axis. See Figure 3. This image is a
repetition of a slow down movement for the left half. We
have drawn it as two gestures from the short to the

longer point. The right four point set shows a different
construction: Here we have a repetition of eight notes,
and then a slowed down version of this repetition. We
also have connected the repeted notes as a line gesture.
So the first four and the last four points are reversing the
construction method: first we have the repetition of a
slowing down gesture, second we have a slowing down
of a repetition gesture.

= 3
pes=a =t s =1

L

Figure 2. The fanfare heading the Allegro movement of Beethoven'’s
sonata op. 106.

duration

—p

oo

— i ansel

Figure 3. The representation of the fanfare in the onset-
duration plane shows two groups of four points each. To the
left we have the repetition of a slowing down gesture, to the
right we have a slowing down of a repetition gesture.

The question is how these two groups are related as
gestures. To make this question precise, we consider the
hypergesture @ that connects the first (left) slow down
gesture to the second slow down gesture. Then we
consider the analogue hypergesture o connecting the
first (right) repetition gesture with the second repetition
gesture, see Figure 4.

We can connect o to o by two hyper-hypergestures. The
first one is shown with hypergesture @’. We first rotate o
and then reverse the direction of the hypergestural
parameter, thereby moving from the lower to the higher
arrow. Then we deform this hypergesture to o. This is a
problematic action since we have to change the
hypergestural parametrization, which is an unnatural
mathematical action. The second variant is more natural:
We first make a rotation of g around an axis in the onset-
duration plane that has direction half angle between
horizontal and angle of the first slow down arrow. The
resulting hypergesture @”’ can be deformed into o like in
the first variant.
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Figure 4. Two hyperhypergestures connecting @ with o.

This second variant also exchanges duraton and onset,
and this is what we expect from the former insight that
first we have the repetition of a slowing down gesture,
second we have a slowing down of a repetition gesture.
This reversion is geometrically realized by the rotation
around that skew axis. We however observe that this
rotation introduces a third dimension. It is the well-
known trick that avoids travelling through a mirror: just
leaf the figure through the third dimension.

A Composition Software with Finger Gestures

If analysis of compositions can help understand them so
intuitively, then one expects that making compositions
should also be supported by gestural devices. This in fact
an idea that (among other teams) our research team at
the University of Minnesota has investigated since 2007
and which has been realized by Florian Thalmann’s
BigBang rubette (Mazzola and Thalmann, 2011), a
module of the universal music software Rubato
Composer (Milmeister 2009). The BigBang rubette has
been used to compose an orchestral variant of Boulez’s
famous serial composition Structures pour deux pianos
(Mazzola, Losada, Thalmann, and Tsuda 2009).

The BigBang rubette uses the following principles to
shape a musical composition:

1. It displays a two-dimensional plane (in fact the
computer screen, see Figure 5) whose points
have two out of five musical coordinates: onset,
pitch, loudness, duration, and voice. The user
can choose which two coordinates should be
shown.

2. The user can load a musical compostion from a
MIDI file or draw a set of points on the plane.
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3. Apart from Boolean operations on such sets on
note-points, the user can operate affine
transformations by three-finger gestures on the
trackpad. We shall come back to this point soon.

4. The user may change the plane at any time and
show the composition from another parametric
perspective. The affine transformations of
Boolean operations can be continued on this
new plane.

5. The user can also create a grid of affine
transformations, like a translation grid for
ornaments, but with any affine transformation
in the grid arrows!

6. The user can also make an alteration, that is a
deformation of the composition according to
certain points of attraction which act as
gravitational forces. This operation is a vast
generalization of quantization or pitch alteration
known from classical music theory.

Figure 5. The BigBang Interface showing the first measures of
Beethoven’s op. 106 in the onset-pitch plane. The rectangles
correspond to notes, their position, geometry and color cor-
respond to their musical parameters of onset, pitch, loudness,
duration, and voice.

We should comment on the question of the two-
dimensional space where all these operations take place.
This apparent restriction is much less serious than one
would argue since it is a classical fact of affine algebra
that any affine transformation in the n-dimensional
space can be written as composition of two-dimensional
transformations, i.e. transformations that affect only two
of the n coordinates. So our user interface allows for n—
dimensional transformations.
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Figure 6. The three-finger gestures represent all possible two-
dimensional affine transformations.

Let us show how the three-finger gestures can represent
two-dimensional affine transformations, see Figure 6.
The movements of the three fingers, starting at positions
fl, fz, f3, defines three vectors that give rise to a number
of geometric variables, and these have a meaning in
terms of classical generators of affine two-dimensional
transformations as follows:

1. d; ~ translation
2. |vel/lvs] ~dilation

3. 6 ~ rotation

4. © ~ shearing

5 ¢ ~ reflection

Yoneda’s Lemma for Creativity

As we have shown above, the functorial approach with
Yoneda’s lemma as an outstanding theorem provides
excellent technical tools for music theory, musical
gestures, and composition. It is natural to ask for deeper
reasons for the creative power of Yoneda’s lemma.

In (Mazzola, Park, and Thalmann 2011), we have given a
theoretical basis to creativity as it may emerge from the
thought process induced by Yoneda’s lemma. In this
paper we want to give a summary of that approach and
illustrate it with a discussion of the variational strategies
of Beethoven in the third movement of his piano sonata
op 109. This subject is presented in detail in (Mazzola,
Park, and Thalmann 2011, chapters 19.2 and 26).

Let us first interpret Yoneda’s lemma as a mathematical
model for creativity. Whenever one is dealing with
creativity, one has an open question that is set up in a
specific context. The question then focuses on a critical
concept in that context. The concept must be inspected
for its sensitive properties, which we call “walls”. The
proper creative action consists in an opening of these
walls and then in their extensions to new perspectives,
which hopefully yields an answer to the initial open
question. Yoneda’s lemma deals exactly with such a
process. One starts with an open mathematical problem
in the context of a specific category ¢. The problem can

usually be related to a critical object X, which one would
like to understand. Yoneda’s lemma tells us that in order
to do so, one has to look the system ®@ of all perspectives
f:V— X from addresses V in ¢.

In theory one then integrates these perspectives
(together with the address changes over X, i.e. the
morphisms between the addresses that commute with
the perspectives) and creates the colimit colim(®)— X.
This is a kind of union of all addresses with their
perspectives to X, patched together by the relations
given by address changes, see (Mac Lane 1971) for
technical details. This huge space is of no usage in
practice. One rather looks for a minimal subset of
addresses and perspectives which characterizes X. For
example, if we work in the category Sets of sets, it is
sufficient to look at all element perspectives e: {1} — X

from the singelton set {1} since their number is exactly
the cardinality of X, and this is enough to know all about
Xin set theory!

So let us suppose we have found a characteristic system
Dpar Of perspectives fi: Vi — X. This is what we could

interpret as being the relevant walls of X. They must be
understood in the view they generate upon X. We then
step over to their colimit and its integrated perspective f:
colim(® char)— X upon X. This colimit is a kind of
extension of the wall system of X. In order to understand
X one is asked to investigate colim(®D ,) and to extend
one’s understanding of X to that of this colimit. This
enriched view upon X is the core of creativity in this
mathematical environment’.

Beethoven’s Six Variations in Sonata op. 109

Let us give a musical illustration of this creative process
with Beethoven’s six variations of the third movement of
piano sonata op 109. In this discussion, we follow the
brilliant analysis given by Jirgen Uhde (Uhde 1974). The
third movement is a sequence of six variations of the
main theme X, which is entitled “Lyrical, with deepest
sentiment”, see Figure 7.

Gesangvoll, mit invigetor Empfindunig,
Andante, maolto cantabile of espreseivo,

Figure 7. The main theme X of Beethoven’s sonata op. 109.

Uhde describes the six variations in a geometric way as
perspectives onto the theme. So let us think of them as
being morphisms f;: Vi — X, i = 1,2,3,4,5,6, although we
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do not specify a precise mathematical category here.
Each of these perspectives stresses a particular aspect of
X. When the first five perspectives are over Uhde asks
whether there is still a reasonable positon for a sixth
variation and adds: “Wasn't the theme illuminated form
all sides from near and from far, and following sound and
structure? The preceding variations ‘danced' around the
theme, and each was devoted to another thematic
property. “ Each of these perspectives focuses on a
specific aspect, on (1) melody, (2) rhythm, (3)
counterpoint, (4) permutation, and (5) third intervals.
These are the characteristic perspectives. And we would
expect from our above Yoneda-driven model of creativity
that their colimit should be built. This colimit would then
constitute a concise perspective onto the main theme X,
containing all the previous insights in a single item. It is
natural to interpret the sixth variation as being this
colimit. And Uhde gives a fascinating interpretation of
the sixth variation. He views it as if it were itself a body
of six micro-variations, and he describes this body as a
“streamland with bridges”, the bridges connecting the six
micro-variations. This is very similar to the construction
of a colimit, which is also essentially a landscape
connecting its components by bridge functions.

Looking at the sixth variation it in fact contains a number
of restatements of the theme, but then dramatically con-
verges to a finale that is a kind of synthesis of all these
aspects, and Uhde describes this final explosion of en-
ergy that is incited by the dominant's vibrational axis
with that long lasting trill b - c# It is however critical that
the dominant lasts so long (measure 165-187, almost half
of the sixth variation!) without being resolved to the
tonic. Expecting the cadential function of the dominant,
the audience would be annoyed when hearing such a
never ending announcement of the tonic. The function of
this trill must be different. We can make this explosion
more precise.

The dominant's vibration is more concretely shown as a
alternative rendition of the dominant tone b and the
neighboring c#, see Figure 8. This rotation around these
two tones is first set as a set of explicit notes, but then
with increasing energy converges to a fulminant final
explosion of a trill. William Kinderman, in his description
of the finale of op. 109 (Kinderman 2003) writes:
“Through a kind of radioactive breakup, the theme virtu-
ally explodes from within, yielding an array of shimmer-
ing, vibrating sounds. One might regard the sustained trill
on B with its upper neighbor C#, which migrates into the
treble in the passage before the thematic reprise, as the
utmost elaboration of the melodic peak of the sarabande
on these two notes.”
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Figure 8. The beginning of the trill explosion in measure 164 of
the third movement of op. 109.

This trill pairing is not only a nice emotional effect of ro-
tational energy, but it has a very substantial interpreta-
tion in terms of a cadence of the underlying tonality! In
fact, the inversional movement l,,4 around b, c# is iden-
tical to the unique inversion of the E-major scale of this
piece, in other words, the trill characterizes or cadences
the basic tonality via its unique inner symmetry inver-
sion. This final trill explosion is a big cadence of the
piece’s tonality E-major. The presence of this inverson is
also strongly evident from inversion-symmetric intervallic
movements in the sixth variation.

Summarizing, the sixth variation is very similar to a
colimit of the first five variations and as such gives a con-
cise and characteristic synopsis of these varied perspec-
tives, culminating in a cadential trill explosion for the
piece’s tonality E-major.

A Semiotic Model of Creativity

In view of the mathematically motivated model of crea-
tivity, we have developed a more generic model in order
to obtain a scheme of creative processes that can be ap-
plied to musical situations that are not related to
mathematical paradigms. And we also studied relevant
literature about creativity and learned that many histori-
cal and present models of creativity are strongly related
to psychological or cognitive aspects. These studies are
reported and commented in (Mazzola, Park, and Thal-
mann 2011). In view of our Yoneda-oriented model we
had in mind some approach to creativity that was more
explicit as a process scheme, operational, and not based
upon psychological aspects.

We further wanted to demystify the concept of creativity
in the sense of a belief that creativity is not in whatever
sense an inspirational, divine or otherwise otherworldly
grounded miraculous phenomenon. Of course there is no
guarantee that one becomes creative in every case, but
we are persuaded that there is a strong rational compo-
nent in creativity, and this is what we have attempted to
model.

Following the above mathematical approach, we propose
to view creativity as being initiated by an open question.
Ideally, the creative process will provide us with an an-
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swer to this question, and this will be the final step in our
model: to test our efforts in view of an answer to that
initial question. The open question must be asked within
a determined context. Creativity need a system of refer-
ence since some achievement might be creative in one
context, but not in another. For example, a monkey
might be creative in solving a problem of how to grasp a
banana in a difficult position, while the same achieve-
ment is not creative at all for a human. We have chosen
such a reference system to be a semiotic, a sign system.
This is important since we argue that creativity must al-
ways be an extension of a system by added contents.
Purely formal extensions cannot be qualified as being
creative. For example, the set of all sonatas is, in the
formal system of musical data formats, given as a point
in a big powerset. But Beethoven’s composition sonata
op. 57 (Appassionata) is a creative achievement not be-
cause of its membership in that big powerset, but be-
cause Beethoven added significant contents to what is a
sonata in the semiotics of musical compositions.

Next, relating to the initial open question, one is asked to
identify a critical concept (sign) in the semiotic context, a
concept that might be crucial to answer the initial ques-
tion.

Looking at this critical concept, we propose to look for its
properties or attributes which are responsible for the
critical status of the concept. We call these properties
the concept’s walls. In Einstein’s solution of the problem
of time in special relativity, the wall was the singular of
time: There was essentially only the divine Newtonian
time. Such a wall can be very difficult to be identified.
Perhaps this is the hard point in a creative process. Some
walls are so near that you might not become aware of
there mere exisence. That there might be more than one
time is such a wall.

The next step is that one would try to soften the walls, to
find out where they could be eliminated or at least
opened. In Einstein’s situation the question of why time
must be a singular was such an opening action.

Next, one is asked to extend the space beyond the
opened wall in a constructive way. In Einstein’s case, this
was the question of how to deal with a multiplicity of
times. And his solution was the Lorentz transformation
that connected space and time for inertial systems in
relative motion. Recall that such extesions will always
essentially be enrichments of the semiotic system, an
added value in the signs’ contents, not just forms.

The process terminates with a test phase to find out
whether and how far the open question has been solved
by the proposed extensions of the critical concept’s
walls.

Creating Contemporary Counterpoint

Let us conclude this paper with an example of a creative
process in music that is related to the theory of
counterpoint, see also (Mazzola, Park, and Thalmann
2011, chapter 11).

Counterpoint is perhaps the most critical topic when it
comes to search for creativity. In fact, counterpoint is
strictly codified and taught as a sort of catechism of
classical compositional discipline in polyphony, the art of
combining several voices to a balance interplay. In its
most formalized shape, counterpoint has been described
in Johann Joseph Fux's famous treatise Gradus ad
Parnassum (Fux 1725). It was written in Bach's time but
consciously refers to Fux's idol Giovanni Pierluigi da
Palestrina. In the foreword, Fux even stresses his
conservative position: “Why should | be doing so (write
about music) just at this time when music has become
almost arbitrary and composers refuse to be bound by
any rules and principle, detesting the very name of
school and law like death itself.” This last sentence could
have been written in our time where everything seems
to be possible. Our challenge will be to inspect the deep
structure of this theory in order to discover its inherent
potential for a creative extension.

In view of the role of counterpoint pedagogy in music
schools, this seems an important enterprise. Counter-
point is commonly understood as a frozen knowledge
that can at best serve as a gymnastic exercise in
compositional rigor, but never as a tool that one would
actually use for contemporary composition.

The open question. Let us get off ground with the simp-
lest situation in Fuxian counterpoint, see Figure 9. We
are given a melody line, called cantus firmus, c.f. Classi-
cally, it is composed according to the style of Gregorian
chant, but this is not important for our concerns. The
contrapuntal assignment is to invent a second melody,
called discantus to be added to c.f. and fulfilling certain
rules. In our example, we have the simplest case, called
first species, where over each c.f. note we have to posi-
tion a discantus note of same duration. The contrapuntal
rules give us constraints of how to position these notes.

discantus
_§F 3 3 5 ] : 3 -] 6 8
A ——— —N - < = |
o . & B— = ﬁ T ro E——
7‘.—)/,,_,_.9- v e = —,

———

cantus firmus o

Figure 9. The contrapuntal assignment is to invent a second
melody, called discantus to be added to cantus firmus (c.f.) and
fulfilling certain rules.

There are two parts of this rule system. The first part is
completely rigid: It allows us to set a discantus note over
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the c.f. note only if the interval (number of semitone
steps) from the c.f. to the discantus note is a consonant
interval. This means that this consonance can be either a
prime (or unision) (0 steps, same pitch), a minor third (3
semitones), a major third (4 semitones), a perfect fifth (7
semitones), a minor sixth (8 semitones), or a major sixth
(9 semitones). We may also use intervals derived from
these when adding an octave (12 semitones), for
example the octave (0+12 = 12 semitones), the minor
tenth (3+12 = 15 semitones), etc. All other intervals are
called dissonances, and they are strictly forbidden. In our
example you see numbers above each interval, they are
just the steps in the C-major scale, i.e. 5 stands for the
fifth (the fifth note above e), 8 for the octave (the eight
note above c), etc.

The second part of contrapuntal rules prescribes which
intervals may succeed which intervals. In this rule
system, one distinguishes between perfect consonances
(prime, octave, fifth) and imperfect consonances ( thirds,
sixths). Further, different movements form one interval
to the next are conceived: Direct motion, i.e. both voices
ascend or descend. Contrary motion: one voice ascends
while the other descends, or vice versa. Oblique motion:
One voice moves while the other remains on the same
pitch. The fundamental rules as stated by Fux can be
summarized in one single rule: Any motion to a perfect
consonance must be contrary or oblique. In particular
the famous parallels of fifths are forbidden, since they
are direct motion to the perfect fifth consonance.

These rules are very formal, but they intend to produce a
double gesture of cantus firmus with discantus that
alternates between perfect and imperfect intervals. In
fact, once you are at a perfect interval (prime, octave,
perfect fifth), there is not much of a choice to move to
another perfect interval, therefore you want to go to an
imperfect interval, where the choice is larger. But again,
these formal properties are not what we experience in
music, it is rather a well-shaped pairing of voices that we
hear and one that has a dynamical power. The rules
seem to be the formal result of a principle of interacting
forces. But what is the force guiding this interaction? It is
somehow related to the inner life of consonances, but it
is mysterious how this happens.

Our open question therefore might be this: What are the
forces that drive the contrapuntal movement of voices?

The context. The context of our question is multifaceted.
On the one hand we recognize the melodic context:
Counterpoint deals with a multiplicity of melodic voices.
We have see the cantus firmus and discantus voices
here, but the general setup deals with three four or more
voices. Second, the intervallic aspect refers to harmonic
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considerations. Consonances and dissonances are
harmonic functions on intervals. They are not Rie-
mannian (no T, D, S values here), but have two values k
(for consonant) and 6 (for dissonant). We do not con-
sider more complex chords, but only intervals. And it is a
strict theory that attributes to six intervals exactly one
value.

And that value is also invariant under octave extension,
i.e. consonances are defined on pitch classes modulo
octave, this is the so-called octave equivalence. We
might therefore define the set of K = {0, 3, 4, 7, 8, 9} of
consonant intervals (of pitch classes), whereas the
complement D={1, 2, 5, 6, 10, 11} contains the dissonan-
ces. We use here the domain Z4, of the twelve chro-
matic pitch classes with semitone steps, which might be
best represented by the common clock circle that has
twelve hours (0, 1, 2, 3, ... 11, 12=0), and where every
hour represents a key on the piano, up to octave. Then K
UD =74, and have no interval in common: KN D = &,
see Figure 10.

L ié

od 40

6

Figure 10. The sets K (squares) and D (circles) of consonances
and dissonances. They cover the set of all twelve intervals of
pitch classes, contain each six intervals and have no common
elements.

This setup in counterpoint is quite exceptional since the
perfect fifth (7 semitones) is consonant as we expect it
from Pythagorean tradition, but the perfect fourth (5
semitones) is dissonant, which opposes to the Pythago-
rean tradition and to the acoustical theories about con-
sonance altogether. Counterpoint is not an acoustical
theory, the simple frequency ratio 4:3 for perfect fourth
is not an argument for consonance. We learn that coun-
terpoint is a highly symbolic theory that is independent
of acoustical reality. It is a construction for the sake of
composition of melodies, not for frequency ratios.

The admitted consonant intervals are a kind of gestural
movements from c.f. to discantus, and the entire discan-
tus melody could be understood as the final position of a
big sweeping gesture starting at the c.f. melody. The
common understanding of counterpoint is that its Latin
etymology punctus contra punctum, point against point,
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means the interval’s note ‘points’ as opposed to each
other. The discantus is then viewed as a ‘vibrational’
deformation of the c.f. It is straightforward that such a vi-
bration requires the consideration of the forces of ‘elas-
ticity’ which relate c.f. to discantus.

The critical concept. In music, the movement of voices
and their interplay expresses a dynamical exchange of
forces that create the interesting connections of parts
not as static entities, but as poles spanning and being
spanned by a force field. This is a remarkable pheno-
menon in musical syntax: Although its components look
like static structures, they are in fact the visible part of an
entire system of tension and relaxation.

We therefore suggest to focus on the critical concept of a
contrapuntal tension and relaxation’.

Inspect the concept’s walls! When we talk about
tension, the first question that arises is about its
direction: between what and what is the tension
spanned? The first answer might seem to be obvious: It is
spanned between the two voice gestures, and this is
what common understanding of counterpoint suggests.
But then, here is a first wall: why should this be a
tension? We have only consonances that move the c.f. to
its discantus. What kind of tension can this be?

The second wall is about the nature of such a tension.
What is creating the force between the tensed parts? It is
also a wall since in view of the first wall, we do not see
any kind of tension within the consonances.

Soften and open the walls!

Figure 11. Two interpretations of counterpoint as a hyper-
gesture. The first is a hypergesture of melodic lines from c.f. to
discantus. The second, a hypergesture of intervals, is more ade-
quate to the original contrapuntal thinking.

The first wall looks quite hard. The only direction that is
visible is the gestural movement from c.f. to discantus.
This is due to the fact that the classical construction of
counterpoint gets off ground after the c.f. melody has
been built. But let us look more carefully at a composed
counterpoint in the sense of a gestural movement. We
have the c.f. gesture and this one is taken as a starting
point of a gestural movement towards the discantus
gesture. But if we look more precisely, this “hyper-
gestural” construction (gesture of gestures) consists in a
sequence of tiny intervallic gestures. The melodic gesture
is composed of many intervallic gestures. We first build

the c.f. gesture and then successively move in each inter-
val to the cantus firmus gesture, see Figure 11, where
this movement is indicated by a vertical arrow.

But this is not mandatory. One may also view the result-
ing counterpoint as being generated by a hypergesture
that moves horizontally from left to right. And this one
would then take each interval gesture and move it to the
next to the right. This alternative is a very simple special
case of what in gesture theory is known as the Escher
theorem: One may always exchange the order of gene-
rating gestural movements, see our remark for a detailed
account on this far-reaching principle.

Is this reinterpretation musically reasonable? Historically
speaking it is since it has been shown that the concept of
punctus contra punctum was not the vertical opposition
of voices, but the opposition of successive intervals. In
other words, the concept of a point (punctus) in this
contrapuntal approach was the entire intervals! Each
interval is thought of being a kind of ‘thick’ point, a point
in the contrapuntal space. This is completely natural. The
contrapuntal idea takes intervals and moves them
around. This is not in contradiction to the Gregorian
construction of the c.f line, but it tells us that the tension
has another direction: The movement proceeds from
interval to interval, although the intervals are all
germinating from the c.f. notes.

Does this opening help approach the second wall: the
nature of the contrapuntal tension and relaxation? The
guestion now is no longer about a tension between c.f.
and discantus notes, but between successive consonant
intervals. We are looking at the set of consonant
intervals and move around in this set. But can there be
an kind of tension on this seemingly compact set of
consonant intervals. After all they are all consonant. This
is true, but we know that there are intervals which are
more consonant than others: Some are perfect, the
others are imperfect. It is interesting that in the historical
development of contrapuntal theories, imperfect
intervals have also been called dissonant, see [102] for a
detailed account on this terminological finesse in the
history of counterpoint! The question about this second
wall would then be whether the set of consonant interval
bears something dissonant, whether some intervals
might be infected by a dissonant character, and then
moving from perfect to imperfect intervals would be a
hidden change from consonances to dissonances.

Extending open walls. The opening of the first wall refers
to what can be done for the second wall. We are
confronted with the set K of consonant intervals. We are
searching for forces that might explain the tension
between successive consonant intervals. The next
question is therefore about the nature of such a tension.
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Evidently this is a deep problem since it regards the very
definition of consonances and dissonances. How are they
characterized? Is there any chance to conceive of such a
tension from a deeper understanding of the dichotomy
of intervals defined by splitting them into the comple-
mentary sets K, D?

We have already seen that there is no acoustically valid
definition of consonances in counterpoint since the
perfect fourth is dissonant, whereas the perfect fifth is
consonant. Also observe that no acoustical theory of
consonances would allow for a strict separation of
consonances from dissonances, there are only degrees of
consonance in acoustical theories. Let us look how these
theories would define consonances. They would define a
function (like Euler’s gradus suavitatis function) that
would be evaluated for each interval and yield more or
less high ‘sonance’ values. But this is not the only way to
define K! One may also define the whole set instead of
first collecting its members. There is in fact an interesting
way to do so and to arrive at the set K.

The solution looks as follows: We do look at all splittings
of the ensemble Z4, of all intervals (of pitch classes) into

two six-element complementary sets (X,Y), i.e. XUY = Z,,

and XNY = J. But how to find exactly our candidate
(K,D)? We have a first very important property of this
splitting, namely that there is exactly one symmetry that
maps each element of K to an element of D, and vice
versa, and this symmetry is A(x) = 5x + 2, it is called
autocomplementarity symmetry.

In Mathematical Music Theory (Mazzola 2002) it has
been shown that there are essentially only six such inter-
val dichotomies, they are called strong dichotomies. Here
they are, together with their unique autocomplemen-
tarity symmetry, their number relates to the classifi-
cation theory in (Mazzola 2002, chapter 30):

1. Nr. 641 A64 = (l,J) = ({214151719111}1{011131618110})1
A64(X) =11x+5

2. Nr.68, Ags=({0,1,2,3,5,8},{4,6,7,9,10,11}),
Aeg(X) =5x+6

3. Nr.71, A5 =({0,1,2,3,6,7},{4,5,8,9,10,11}),
A71(X) =11x+11

4. Nr.75,4,=({0,1,2,4,5,8},3,6,7,9,10,11}),
A75(X) =11x+11

5. Nr.78,A,5=({0,1,2,4,6,10},13,5,7,8,9,11}),
A78(X) =11x+9

6. Nr.82,Ag =(K,D)=({0,3,4,7,8,9},{1,2,5,6,10,11}),
Agz(x) =5x+2
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Why do we choose the last one for the classical
consonance and dissonance concept of counterpoint?
There is a geometric reason: It is the one such that the
images A(x) of intervals x have the largest num-ber of
third intervals to be connected to each other, this means
that Ag, throws x farther away than every other
autocomplementarity function. For example, the fifth x =
7 is mapped to A(x) = 1, the minor second, which is two
minor thirds away. Also the distances among all six con-
sonances in K in terms of number of thirds between any
two of them is minimal, they are grouped as tight as
possible, but see (Mazzola 2002, chapter 30) for details.
Therefore the classical consonance-dissonance dicho-
tomy can be chosen (among the six strong dichotomies)
for its geometrically extremal properties.

So we are viewing five other dichotomies on which one
could potentially focus. But what is this game helping us
understand the nature of contrapuntal tension? We still
have not understood how we could import the dicho-
tomy of consonances vs. dissonance into the part K of
consonances as suggested by the idea of perfect and im-
perfect consonances. The situation is really dramatic: On
the one hand we have to move from consonance to con-
sonance, on the other we would like to move from con-
sonance to dissonance. This is a plain logical contra-
diction.

It is as long as we view the entire setup as a
configuration of sets of intervals. But we should learn
from the very definition of these strong dichotomies that
they are effectively defined by their autocomplemen-
tarity functions. This is, what we should really take care
of. The sets as such are of secondary relevance. Can we
try to move from a given consonance ¢ to another
consonance n as if the latter were a dissonance? This
would mean that we have to construct a limiting line
between ¢ and n that turns the latter into a kind of
dissonance.

D+6

Figure 12. We may move from one consonance to another
consonance but move from the ‘imaginary’ dichotomy’s conso-
nant part K + 6 to its dissonant part D + 6.
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So why not just transform the consonance-dissonance
dichotomy (K,D) such that parts of the D overlap with K?
And such that n, but not € falls into the transformed part
of D? Let us make a picture of such an idea, see Figure
12. To the left you see the two halves K, D covering the
interval set. The transition from one consonance to
another would be the problem when living inside K. But
we could, for example, add a tritone (6 semitones) to K
and to D. That would vyield Ag+6 = (K+6,D+6) =
({0+6,3+6,4+6,7+6,8+6,9+6},{1+6,2+6,5+ 6,6 + 6,10 + 6,11
+6}) = ({6,9,10,1,2,3},{7,8,11,0,4,5}), and we see that the
image of minor second 1 is the perfect fifth 7! So 7
appears as a transformed dissonance, see right half of
Figure 12. If we had the consonance § = 3, then the con-
sonance n = 7 would be a transformed dissonance, i.e. a
consonance that is on the other side of the transformed
dichotomy (K+6, D+6), while 3 is a transformed conso-
nance. In this way we may move from one consonance to
another consonance but move from the ‘imaginary’ di-
chotomy’s consonant part K+6 to its dissonant part D+6.
In our example this would enable us to move from the
minor third to the perfect fifth, a movement that we
observe in our very first example in Figure 8 from the
third to the fourth interval.

The idea here is that we simulate a separation of
consonances from dissonances by a ‘deformation’ of the
(K,D) dichotomy that would create imaginary conso-
nances and dissonances within K. We would understand
this deformation as the result of a force action (the trans-
formation we used above!) upon (K, D) to make it pro-
duce the imaginary dichotomy. In the theory of this ap-
proach it can be shown that such deformations in fact
strongly relate to what physicists call “local symmetries”,
which are responsible for force fields.

Does this approach produce the rules which Fux has
given to us in his catechism of counterpoint? The answer
is: yes, it does. It in particular produces the forbidden
parallel of fifths and no other forbidden parallels, see
(Mazzola, 2002, chapter 31.4).

Summarizing, we have proposed an extension of the wall
of tension by local symmetries, which transport the di-
chotomic tension of (K,D) into K. But we have much more
than this interpretation of tension in terms of symme-
tries of intervals: We now have five other strong dichoto-
mies, Ags, Dsg, A71, Ays, Ayg on which we can try to compo-
se contrapuntal music!

This type of creative work is not one of direct compo-
sitional work, but one of the invention of new strategies
to compose contrapuntal music based upon other con-
cepts of interval consonance. We retrieve the classical
theory, but also five new contrapuntal worlds to be crea-
tive.

Testing the Extension. We have written model
compositions relating to other than the classical Fuxian
counterpoint dichotomy, see Figure 13.
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Figure 13. We are taking the major dichotomy Ag, and allow
‘consonances’ to be the intervals in its | part. This yields the
composition as shown.

And Julien Junod (Junod 2010) has implemented a
software module in Rubato Composer, which allows to
morph a composition written in one dichotomy to a
composition in any another dichotomy. Our last example
is from the composition Black Summer created by Joomi
Park for the CD Passionate Message (Mazzola, Park,
Thalmann 2011, chapter 23). This contemporary compo-
sition was created without knowledge about these ‘exo-
tic’ dichotomies.
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O 4 g Mminor second
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A ! el wilh unique inversion symmetry
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Figure 14. Left: the strong dichotomy of class nr. 78, together
with its unique autocomplementarity symmetry. The ‘conso-
nances’ are the six red pitch classes. Bottom: The numbered
intervals of the score of Figure 15 are shown to the bottom.

It is therefore remarkable that she uses the dichotomy of
class nr. 78 in her interval selection. The left hand of this
homophonic composition is dominated by five of six
intervals from the ‘consonant’ half {1, 3, 5, 6, 9, 11} of
the dichotomy, see Figure 14.

Let us look at the score as displayed in Figure 15. These
intervals occur in an agreeable and relaxed way as if they
were normal consonances. The traditionally consonant
unison in the last line then surprisingly appears as a
tension! It plays a dissonant role. And it is remarkable
that it is ‘resolved’ to a series of minor seconds in the last
measure, since the (consonant) minor second is the
interval that corresponds to the unison under the
autocomplementarity symmetry of the dichotomy.
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Figure 15. The intervals of the left hand are belonging to the
‘consonant’ half of the strong dichotomy nr. 78. The numbers
of the intervals relate to Figure 14.
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such as Arnold Schoenberg. He often speaks about forces between
chords in his classical treatise on. He even uses the metaphor of sexual
attraction and repulsion between chords.

69



Guerino Mazzola & Joomi Park - Creativity in Music : Theories, Strategies, and Composition Software

[Abstract in Korean | 32 22F
S0 Ao Hx/d: 0|8, MEf, Xtx AZEYO

LI =N ¥ B |

H 2l opEE}, 40|

of 20= =ty 29 0|21 89 2o FEFIH(functorial) Y2 Y- (T FuncorZt =212 HZFES ALO|Of

ot #=H S 20ghol 2I4EIACE O WOl S4H MAX ol 0|21 0| RHIE AZEQ 00N Hddt=

O AFEEIRAEL, MK Of20f YAt S4Xez Mot M2 2Pttt O 322 394 =40 tist

oy Ho YEHS AN, of HE2 QUte] Ex F2lE AM8stol HEMC| motk  ALbEf op
=

Bs
1092 39tE0| LtEs M 7ie] #HESZS Ot

HE8AIZ|E Ads 7I=stez UielslENM O 22 225 HEL,:

70 Emille, the Journal of the Korean Electro-Acoustic Music Society Vol. 9, No.1 (2011)



	Creativity in Music
	Abstract
	Functors for Music
	Gestures : A Musical  String Theory
	Yoneda's Lemma for Creativity
	A Senuituc Model of Creativity
	References
	국문 요약




